Journal of Parallel and Distributed Computing 198 (2025) 105037

Journal of Parallel and Distributed Computing

Contents lists available at ScienceDirect
PARALLELAND
DISTRIBUTED
COMPUTING

journal homepage: www.elsevier.com/locate/jpdc

GreediRIS: Scalable influence maximization using distributed streaming c:.)

maximum cover

updates

Reet Barik ", Wade Cappa® ", S.M. Ferdous °, Marco Minutoli *, Mahantesh Halappanavar ",

Ananth Kalyanaraman “%"

2 Washington State University, 99164, WA, USA

b Pacific Northwest National Laboratory, Richland, 99354, WA, USA

ARTICLE INFO

Keywords:

Distributed influence maximization
Distributed submodular maximization
Streaming maximum k-cover

Parallel graph algorithms

ABSTRACT

Influence maximization—the problem of identifying a subset of k influential seeds (vertices) in a network—
is a classical problem in network science with numerous applications. The problem is NP-hard, but there
exist efficient polynomial time approximations. However, scaling these algorithms still remain a daunting task
due to the complexities associated with steps involving stochastic sampling and large-scale aggregations. In
this paper, we present a new parallel distributed approximation algorithm for influence maximization with
provable approximation guarantees. Our approach, which we call GreediRIS, leverages the RANDGREEDI
framework—a state-of-the-art approach for distributed submodular optimization—for solving a step that
computes a maximum k cover. GreediRIS combines distributed and streaming models of computations, along
with pruning techniques, to effectively address the communication bottlenecks of the algorithm. Experimental
results on up to 512 nodes (32K cores) of the NERSC Perlmutter supercomputer show that GreediRIS can
achieve good strong scaling performance, preserve quality, and significantly outperform the other state-of-the-
art distributed implementations. For instance, on 512 nodes, the most performant variant of GreediRIS achieves
geometric mean speedups of 28.99x and 36.35X for two different diffusion models, over a state-of-the-art parallel
implementation. We also present a communication-optimized version of GreediR1IS that further improves the
speedups by two orders of magnitude.

1. Introduction

ing classical submodularity results [7], Kempe et al. provided a greedy
(1 = 1/e)-approximation algorithm, which incrementally expands the

Given a large real-world graph (e.g., online social network), a fixed
budget k > 0, and a stochastic diffusion model M, the influence max-
imization (henceforth, INFMAX) problem aims to identify k nodes (or
“seeds”) that when initially activated, are expected to maximize in-
fluence spread on the network under the model M. This “word of
mouth” approach to spreading influence has made INFMAX rich in
applications—e.g., for online viral marketing [1], network monitor-
ing [2], controlling rumors in social networks [3], recommendation
systems [4], and in understanding how contagions spread in a popu-
lation [5,6].

INFMAX is NP-hard under classical diffusion models [5] such as In-
dependent Cascade (IC) and Linear Threshold (LT). The seminal work by
Kempe et al. [5] showed that the expected influence spread function is
monotone submodular—which means the marginal gain of adding a new
seed to the current solution set decreases as the set becomes larger. Us-

* Corresponding author.
E-mail address: ananth@wsu.edu (A. Kalyanaraman).

https://doi.org/10.1016/j.jpdc.2025.105037

seed set by selecting the next seed with the highest marginal gain in
influence. Although the connection to submodularity provides efficient
algorithms, approximating INFMAX still requires Monte Carlo simula-
tions to generate samples that approximate the spread from the current
seed set [5].

An alternative class of approaches, such as the IMM [8] and OPIM [9]
algorithms, uses the notion of reverse influence sampling [10] to obtain
(1-1/e—¢)-approximation, where ¢ € [0, 1] is a controllable parameter
that models the sampling error. These approaches [11,8,9] use random
sampling of the graph to “score” vertices based on how other vertices
can reach them and use that information to identify seeds. These algo-
rithms and related implementations have sufficiently demonstrated that
the RIS-based approach is significantly faster in practice compared to the
greedy hill climbing approach [5]—making the RIS-based approach the
de facto choice to implement INFMAX.

Received 4 July 2024; Received in revised form 18 November 2024; Accepted 9 January 2025

Available online 14 January 2025
0743-7315/© 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
ne-nd/4.0/).

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://orcid.org/0000-0003-1504-6768
http://orcid.org/0000-0003-4557-385X
http://orcid.org/0000-0001-6721-233X
mailto:ananth@wsu.edu
https://doi.org/10.1016/j.jpdc.2025.105037
https://doi.org/10.1016/j.jpdc.2025.105037
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2025.105037&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

R. Barik, W. Cappa, S.M. Ferdous et al.

The RIS based approaches consist of multiple rounds, each with two
major phases: a) Sampling, and b) Seed selection. The sampling phase
generates subgraph samples based on the diffusion model, and the seed
selection phase solves a maximum k-coverage problem on the generated
samples—i.e., identifying k vertex seeds that provide maximum cov-
erage over the samples. Minutoli et al. [12,13] developed Ripples, the
first parallel implementation for RIS-based IMM [8]. Subsequently, Tang
et al. [14] developed DiIMM, which uses a similar distributed strategy to
parallelize IMM. Both these approaches retain the approximation guar-
antees of their sequential predecessors. However, in both these methods,
while the sampling step is easier to scale, the seed selection step is more
challenging as it involves performing k global reductions—as observed
later in the results.

Contributions: In this paper, we target the seed selection step to im-
prove the scaling of RIS-based approaches. In particular, we propose a
distributed streaming maximum-k-cover (abbreviated max-k-cover)
to accelerate seed selection, using the distributed GREEDI [15,16] frame-
work under a parallel setting. In this framework, a set of local machines
computes partial greedy solutions of the local dataset which they trans-
mit to a global machine, and the global machine applies an aggregation
algorithm on the partial solutions received.

Distributed GREEDI avoids expensive reductions. However, we ob-
serve that employing the vanilla GREEDI to INFMAX, the global aggre-
gation leads to a compute and communication bottleneck as the number
of machines increases. To address this issue, we have designed two
techniques: a) aggregation in the global machine asynchronously by
adapting a recent streaming algorithm, and b) truncating elements in the
local partial solutions to aggressively cut down on computing and com-
munication for the global machine. Using the streaming algorithm in the
global aggregation allows us to carry out the local and global seed se-
lections in tandem, effectively masking the communication overheads.
Both of these approaches come with theoretical approximation guaran-
tees. In summary, the main contributions are:

+ We present GreediRIS, a new distributed streaming algorithm for
RIS-based INFMAX on distributed parallel platforms (§3).

» We present and implement GreediRIS-trunc, a truncation tech-
nique, to provide a knob to control communication overhead with
a tradeoff in quality (§3.3.2).

« All our algorithms have provable worst-case approximation guar-
antees (§3.3.2).

» Experimental evaluation on up to 512 compute nodes (32K cores) of
a supercomputer demonstrates that GreediRIS significantly out-
performs the state-of-the-art distributed methods [12,14] (reported
speedups with geometric mean of 28.99% and 36.35x% for two pop-
ular diffusion models), while preserving output quality (geometric
mean of reported quality change from state-of-the-art baseline is
2.72%).

Our work—the first of its kind to incorporate distributed parallel
submodular optimization for INFMAX—is also generic enough to be ex-
tended to a broader base of application settings that use submodular
optimization. While such adaptations need significant efforts in imple-
mentations, this paper represents a concrete demonstration for INFMAX.

2. Background and preliminaries

In this section, we review the necessary background for the INFMAX
problem, including submodular optimization, max-k-cover, and the
IMM algorithm which forms the sequential template for our method.
Table 1 lists the key notations used in the paper.

Let G = (V, E) be a graph, where V and E are the sets of vertices
and edges, respectively, and n = |V'|. The process of influence spread on
G can be described as follows. Let .S C V' denote a seed set of vertices
which are already activated. Then, the expected influence of S’ (denoted

Journal of Parallel and Distributed Computing 198 (2025) 105037

Table 1

Notation.
Symbol Description
G=(V,E) Input graph with n vertices in V'
S Seed set, SCV
k Target number of output seed vertices
M Diffusion process for influence spread over G
o(A) Expected influence of A C V under M
OPT Max influence spread of any set of k vertices
N,(u) Subset of activated neighbors of vertex u
RRR(u) Random Reverse Reachable (RRR) set for u
0 Target number of RRR sets (i.e., samples)
R Set containing # RRR samples
R(i) Subset of vertices in V present in RRR set i
S(v) Covering subset for v: S(v) = {ilv € R(i)}
m Number of machines (or processes)

by o(S)) is the expected number of vertices that will be activated by .S
through a stochastic diffusion process, defined by a model M. Note that
0<o(S)<n.

Definition 2.1 (INFMAX). Given a graph G = (V, E), a diffusion process
M, and an integer k, the Influence Maximization problem finds a seed
set S CV, where |S| < k maximizing ¢(S) under M.

Kempe et al. [5] showed that INFMAX is NP-hard under two practical
diffusion models, namely, Independent Cascade (IC) and Linear Thresh-
old (LT). In the IC model, at each diffusion step, every edge (u,v) has a
fixed probability p,(v) for an active vertex u to activate a neighbor v. The
process stops when no further activation is possible. The LT model de-
scribes group behavior where individuals (i.e., v € V) have some inertia
(modeled by a scalar 7,) in adopting mass behavior. The strength of the
relationship between two vertices u, v € V' is captured by a probabilistic
edge weight w,), and the sum of the incoming weights on any vertex is
assumed to be 1. A vertex v becomes active in LT if), N, @) Waw 2 Ty
where N, (v) is the subset of active neighbors of v.

Kempe et al. [5] also proved that the expected influence o(.S) is
a non-negative monotone submodular function. Submodular functions
model diminishing returns of utilities. More formally:

Definition 2.2 (Submodular function). Let X be a finite set, the function
f : 2%¥ = R is submodular if and only if:

fAU{x}) - f(A) = f(BU{x})— f(B), m
where ACBC X and x€ X \ B.

For INFMAX, where X =V, the left term represents the marginal gain
in influence for adding a new vertex x to an existing seed set A C V. By
the submodularity property, the net gain of adding a new vertex into the
current seed set could only diminish as the seed set expands—suggesting
a greedy approach toward seed set expansion. This seminal result led to
the first greedy approximation algorithm for INFMAX [5]—using greedy
hill climbing [7]. Estimating the actual influence spread is also shown
to be #P-hard under both the IC and LT models [17,18]. The exist-
ing algorithms for INFMAX thus employ randomized sampling to esti-
mate expected influence and introduce an additive sampling error in
the approximation factor. The early efforts focused on simulation-based
approaches such as Monte-Carlo simulation [5]. Subsequently, another
class of approximation algorithms (albeit faster) was developed by ex-
ploiting Reverse Influence Sampling (RIS) that uses the notion of reverse
reachability [10]. More specifically, this strategy is based on the con-
struction of random reverse reachable set for vertices.

Definition 2.3 (Random Reverse Reachable (RRR) set). Let g be a random
subgraph of G, obtained by removing edges randomly as dictated by

R. Barik, W. Cappa, S.M. Ferdous et al.

their respective edge probabilities. The random reverse reachable set for
vertex u € V' in g is given by: RRR,(u) = {v|3 a path from v to u in g.}

We refer to each RRR,(u) as a sample generated for u. Note that each
such sample is a subset of V. An alternative interpretation of RRR,(u)
is—if a vertex v appears in RRR,(u), then v is a likely influencer of u.
Consequently, higher the frequency of the vertex v appearing in such
random reverse reachable sets, the larger is its expected influence in the
input network.

2.1. The IMM algorithm

Tang et al. [8] proposed the IMM algorithm to implement the RIS
approach [10,11]. The algorithm is summarized in Algorithm 1. The
main intuition is to generate § number of RRR samples, and then select
a set of k vertices as the solution seed set such that they provide maxi-
mum coverage over the set of samples. It uses Martingale analysis and
bootstrap techniques to estimate a lower bound of the sampling effort
required to achieve OPT (the utility of the intractable optimal solution).
Initially, using the analytical formula prescribed in [8], the algorithm
estimates the number of RRR samples to compute, denoted by 8, using
the values of |V|, € and k (Estimate (.) in line 3). Next, the sampling
procedure Sample (.) generates and populates those § RRR samples in
R (line 7). To generate such a sample:

1. avertex u € V is chosen uniformly at random to be the source ver-
tex.

2. given a source, a probabilistic BFS (edges are selected for traversal
based on their assigned weights) on the reverse graph (destinations
are vertices with incoming edges to the source) is used to populate
the RRR sample.

The generated samples are then used to compute k seeds by the seed se-
lection step SelectSeeds (.) asshown in the line 8. This is an instance
of computing a max-k-cover on the universe of samples. Using this
intermediate seed set, (provably an unbiased estimator of the unknown
optimum (OPT)) a lower bound (LB) on OPT is computed, and compared
against a certain fraction of |V'| (denoted by function CheckGoodness
in Algorithm 1; details in [8]). If the condition isn’t met, d is doubled
and the process is repeated. The IMM algorithm conducts at most log | V|
such rounds, which we will term as “martingale” rounds (lines 4-11) till
the condition is met. Once a tight lower bound is computed, the final
sample size () is calculated using the LB, and the martingale loop is ter-
minated. Finally, 6 RRR samples are generated, and the set of k seeds
are selected using those samples (lines 12-13).

The IMM algorithm is shown to be (1 — 1/e — €)-approximate for
INFMAX. Here, ¢ is the precision parameter dictating the sampling error.
We restate a result from [8] here.

Theorem 2.1. Given 6 = A* /OPT and 6 € (0, 1), the Algorithm 1 returns
an (1 — 1/e — €)-approximate solution of INFMAX with probability at least
1-46.

Here OPT is the optimal expected influence. The A* is a function of
n,&,k,5. We refer to [8,19] for the actual value of the function A*. The
(1 =1/e) term in Theorem 2.1 is due to the standard greedy algorithm
for the seed selection that computes a max-k-cover on the universe
of 6 samples. In fact, we can replace the greedy algorithm with any
a-approximate algorithm, where a < (1 —1/e).

Corollary 2.1. Given 8 = A*/OPT, 6 € (0,1) and a-approximate max-
k-cover, the IMM algorithm returns an (a — €)-approximate solution of
INFMAX with probability at least 1 — 6.

The justification of the Corollary 2.1 is as follows. Since the sam-
pling effort, 6 = A*/OPT 1is estimated to guarantee an (1 — 1/e)-

Journal of Parallel and Distributed Computing 198 (2025) 105037

Algorithm 1 IMM(G, k,) by [8].
Input: G(V, E): graph; k: # of seeds; € € [0, 1]: sampling error.
Output: S: the seed set
: {1. Estimate 0 using martingale rounds}
R0
: 0 « Estimate(k,s,|V])
: for x €[1,log|V|] do
if x > 1 then

H—2%x0
R« Sample(G,é — |R],R)
S < SelectSeeds(G,k,R)
if CheckGoodness (S,V,&LB) then

0 « f(k,e,|V|,LB)

break {lower bound condition is met}
: R « Sample(G,0) {2. Generate § RRR samples}
: § < SelectSeeds(G,k,R) {3. Select final seeds}
: return S

W ReNT R BN

S
> O N = O

approximation for the max-k-cover, for any a < (1 — 1/e), the sam-
pling effort is trivially sufficient.

The Sample (.) function is usually implemented as a probabilistic
BFS originating from & randomly selected roots from V in any martin-
gale round. All vertices visited in a probabilistic BFS become the RRR
set for that sample. The SelectSeeds (.) procedure is greedy, and in-
volves iteratively computing k vertices with a maximum coverage on
the set of RRR samples as detailed in §3.2.

Among distributed parallel approaches for INFMAX, the state-of-the-
art comprises of PREEMPT [20] and IMpart [21] for greedy hill climb-
ing, and Ripples [12,13] and DiIMM [14] for parallel distributed IMM.
As we focus on RIS-based approaches, we will review Ripples and Di-
IMM.

Prior work in parallel distributed IMM: Both Ripples and DiIMM
approaches start by loading the entire graph on each machine, and ef-
ficiently distributing the generation of all (6 or §) samples across m
machines, i.e., O(%) samples per machine. However, seed selection
involves significant data exchange to compute the updated marginal
coverage for each vertex, making the step communication-intensive. In
particular, since sampling is distributed, each machine can keep track
of only the local sample coverage for each of the n vertices. Thus, to
get the global coverage values, a global reduction is required each time
a new seed is selected. The Ripples algorithm implements this using k
global reductions (over an n-sized frequency vector). The updated global
frequencies are used to pick the next best seed. In contrast, DiIMM com-
putes these updates in a lazy fashion under a master-worker setting.
Here, after performing a global reduction to select the first seed, the
master processes the remaining vertices in a non-increasing order of
their original coverage. If the next vertex selected is detected to have an
outdated coverage, it is pushed back into the queue and the algorithm
continues. Once it finds the next seed (one with the correct next best
marginal coverage), it broadcast the information to all the machines so
that they can update vertex coverages using their local sample sets. The
master machine accumulates the changes via a global reduction for the
next iteration of seed selection.

We can show that the DiIMM approach is algorithmically equivalent
of performing k global reductions. While Ripples does this entirely in
a distributed fashion, DiIMM computes this using a master-worker set-
ting. In either case, seed selection dominates communication costs, as
it entails a reduction of an O(n)-sized vector within each of the k itera-
tions.

In our work, the distributed sampling step is similar to Ripples and
DiIMM—as it is a step that is easily amenable for distributed parallelism.
The major difference, however, stems in the way we perform seed se-
lection. More specifically, we reformulate the seed selection step using
the RANDGREEDI framework [16] so as to bring the state-of-the-art for
distributed submodular optimization to parallelize influence maximiza-
tion. The key advantages are: a) the k-steps of communication can be

R. Barik, W. Cappa, S.M. Ferdous et al.

reduced to just two steps (as will be explained next in §3.2); and b)
streaming also can be used (along with a truncation scheme) to mask
out communication overheads further (as will be explained in §3.3).

3. GreediRIS: a RANDGREEDI framework for distributed
influence maximization

We exploit the submodular nature of the max-k-cover compu-
tation step in order to accelerate seed selection for INFMAX. The
state-of-the-art distributed submodular maximization algorithm is the
RANDGREEDI [16] framework. Adapting this framework, we present a
new distributed memory parallel algorithm for influence maximization
and refer to our approach GreediRIS.

We first provide a brief overview on GREEDI and RANDGREEDI
(83.1). Then we show how computing max-k-cover allows adapting
RANDGREEDI for any RIS-based INFMAX algorithms (§3.2). We then dis-
cuss the limitations of this simple adaptation and propose a distributed
streaming algorithm (§3.3) and a communication-reducing truncation
technique (§3.3.2) to alleviate these limitations. Section 3.4 describes
our overall parallel algorithm.

3.1. The GREEDI framework

The GREEDI framework represents approaches [16,22,23] for dis-
tributed submodular function optimization under budget constraints.
These approaches initially partition the data set into different ma-
chines. Each machine, independently in parallel, executes the standard
greedy algorithm [7] to compute its local solutions. These local solu-
tions are then communicated to a global aggregation node, where they
are merged. The greedy algorithm is then employed in the global ma-
chine on this set of merged local solutions. The final solution is the
one that maximizes the function value from the set of local solutions
and the global solution. This two-stage algorithm is shown to be more
efficient [16] than earlier distributed algorithms. Although GREEDI per-
forms well in practice, its approximation ratio depends inversely on the
number of machines. RANDGREEDI [16] was proposed to improve the
approximation guarantee of GREEDI. Through a probabilistic analysis,
the authors showed that by partitioning the data uniformly at random,
GREEDI could achieve a constant approximation guarantee. We restate
the following theorem from [16] that proves the approximation ratio of
RANDGREEDI.

Theorem 3.1. Let the greedy method on the local machines be an a-
approximate, and that the global algorithm be a f-approximate for maxi-
mizing a monotone submodular function subject to a cardinality constraint.
Then, RANDGREEDI is (in expectation) % -approximate for the same prob-

lem.

While the local machines in RANDGREEDI need to execute the greedy
algorithm locally, the global algorithm can use any approach.

3.2. Distributed IMM using RANDGREEDI

We first extend IMM into the RANDGREEDI framework. The focus on
IMM is for expository reasons, as it a prototypical RIS approach. Our
distributed approach also works for OPIM [9].

Recall from Table 1 that R denotes the collection of sampled & RRR
sets, and R (i) C V denote the ith RRR set in this collection. Given R, V,
and the target number k, the seed selection problem can be formulated
as amax-k-cover computation as follows. The set R represents the uni-
verse to be covered. From R, we generate a collection of covering subsets,
S. For each node v € V, let S(v) be the subset of RRR sets (identified
by their respective indices in [0, 6 — 1]) in which v appears—i.e., S(v) =
{i €[0,60—1]|lv € R(i)}. Itis now easy to see that the seed selection prob-
lem of IMM reduces to finding a max-k-cover, where the universe is

Journal of Parallel and Distributed Computing 198 (2025) 105037
{0,...,0 — 1} (i.e., R), and the collection of covering subsets is S. More
formally, the max-k-cover problem here is to find a subset S C V' that
is given by: arg max gy C(S) = |Uies S(i)|, subject to |.S| < k.

The function C(.5) can easily be shown to be non-negative monotone
submodular. A greedy algorithm that repeatedly selects a covering sub-
set from S with the largest marginal gain with respect to the current so-
lution, achieves (1 — 1 /e) worst-case approximation guarantee [7] which
is the best achievable unless P=NP [24]. In practice, faster variants of
greedy exist, such as lazy greedy [25], threshold greedy [26,27], and
stochastic greedy [15]. Lazy greedy [25], which exploits the monotone
decrease in the marginal gain of a submodular function, is widely used
and often performs much faster than the standard greedy in practice
[27] while obtaining the same approximation guarantee. The submodu-
larity property ensures that the marginal gain of an element with respect
to the current solution can only decrease. Lazy greedy uses this observa-
tion and maintains a max heap of upper bounds on the marginal gains of
each element. These upper bounds, updated lazily, are used to select the
next element, potentially avoiding computations of marginal gains for a
large fraction of the elements. Our implementation supports both stan-
dard and lazy greedy approaches. Algorithm 2 shows our lazy greedy
max-k-cover.

Algorithm 2 Lazy-greedy-max-k-cover(é, S, k).

Input: 6: size of the universe, S: n covering subsets, k: an integer
Output: S: A subset of [0, ...,n — 1] of size at most k
1: Build a max heap Q using all n covering subsets S, and using the cardinality
of each subset as the key

2: =0

3: while (|S| < k) or Q is empty do

4 v = Q.pop()

5. marginal gain = C(S U {v}) — C(S)
6: if marginal gain > Q.top().key then
7: S=Su{v}

8: else

9: Q.push({v, marginal_gain))

10: return S

Next, we describe our distributed parallel version of Algorithm 1
using the RANDGREEDI framework. Let m to denote the number of ma-
chines (or processes or ranks, used interchangeably), and p € [0,m — 1]
denote an arbitrary machine. Given G(V, E), k, and m, our distributed
IMM algorithm conducts multiple martingale rounds just as the sequen-
tial version (Algorithm 1). Algorithm 3 shows the RANDGREEDI version
of our distributed IMM for each round.

During the sampling phase (lines 1-4 of Algorithm 3), each machine
independently generates /m samples from G. This is achieved by se-
lecting vertices in V' uniformly at random and generating RRR(v) for
each of them. We use the Leap Frog method described in [12] to ensure
consistent parallel pseudorandom generation across different values of
m. At rank p, the parallel sampling phase produces), Since 6 doubles
with each martingale round, in our implementation we retain the pre-
vious batch of samples and simply add the second half (i.e., augment

2 - 2
The samples in R, are numbered from [p - %,(p +1)- % — 1], so that
each rank can claim a disjoint interval. Next, we generate a partition-
ing of the set of vertex ids [0,n — 1] uniformly at random across the m
machines so that each rank p is assigned a distinct subset of ~ n/m ids
(line 5 of Algorithm 3). Let V,c [0,n — 1] denote this subset assigned to
rank p. Note that as this is a uniform random partitioning, and therefore
each vertex is assigned only to one rank.

Next, we perform a shuffle communication such that the ids of all the
RRR sets that contain a particular vertex u are gathered at the rank that
is responsible for u. This is implemented using an MPI all-to-allv
communication primitive (line 6 of Algorithm 3). Specifically, we first
construct a set of partial covering subsets S, (u) at each rank p using the

the previous round’s set of

samples with a new set of

samples).

R. Barik, W. Cappa, S.M. Ferdous et al.

Algorithm 3 RANDGREEDI-RIS-Round(G, k, , m).

Input: G(V, E): input graph, k: an integer, §: number of samples for the current
round, m: number of machines
Output: S: the seed set
1: for each machine p € [m] in parallel do
2 R, < Generate 6/m random samples
3: for each vertex ve V do
4 S,0={ilbeR,()
5: Partition V' uniformly at random into m vertex sets (V, at p)
6
7
8

: All-to-all: S(u) = Upe[m]{Sp(u)w €V,}atp
S« RANDGREEDI-max-k-cover(@,S Lk, {Vp})
: return S

Samples
0 - j -1
g 0 X X
£ X X X X
>
i X X | X X
X | X X
XX
n—1 X | X | X X

Fig. 1. Sampling visualized as a sparse matrix. The sampling phase populates
the columns, and the shuffle phase distributes by rows.

RRR sets of SRP (line 4 of Algorithm 3). These partial covering subsets
are then scattered so that the lists corresponding to all vertices u € V,
are gathered at rank p as follows: S(u) = UpelmI {S,wlueV,}atp. At
the end of this step, rank p contains the complete covering subset S(u)
for each u € V,. Fig. 1 illustrates this shuffle operation.

We are now ready to apply the RANDGREEDI framework to com-
pute seeds. Algorithm 4 shows the function to compute the seed set
using max-k-cover. As explained in §3.1, the RANDGREEDI frame-
work involves two steps: computing local max-k-cover in a distributed
fashion, and then merging those local solutions into a global (single)
machine to compute a global max-k-cover. Subsequently, the global
solution (Sg) is compared with the best of the local solutions (S,), and
the best of the two is output as the final solution (S) for that martin-
gale round. This is followed by a broadcast call to make the utility of
the selected seed set available at all machines.

Algorithm 4 RANDGREEDI-max-k-cover(6, S, k, {V,}).

Input: 0: size of the universe, S: n covering subsets, k: an integer, {Vp}: uniform
random set of partitions of V'

Output: S: Asubsetof V : [0,...,n— 1] of size at most k

: for each process p € [m] in parallel do

S, < Lazy-greedy-max-k-cover(, S,, k) //local max-k-cover

: Gather: S’ = Up S(S,)

: Sg « Lazy-greedy-max-k-cover(6, S’, k) //global max-k-cover

s S, =argmax,g,, {C(S,)} //local best

: S = argmax{C(Sg), C(S,)}

: return S

NO U s wN =

Limitations: A straightforward implementation of Algorithms 3 and 4
could lead to the global aggregation step becoming a bottleneck, as it
has to wait until all the local machines complete their local max-k-
cover computations. With increasing m, this issue is exacerbated by the
global aggregation step receiving up to m - k local solutions. To test this
hypothesis, we implemented and tested this template version. Table 2
shows the running times for the local and global max-k-cover steps
as a function of m. The results show that as m is increased, the time to
generate the local solutions decreases while the time to aggregate and
produce the global solution increases. Also, the global aggregation step
chooses the final k seeds from a significantly richer set of candidates,

Journal of Parallel and Distributed Computing 198 (2025) 105037
Table 2
The runtimes in seconds for computing the local and global
solutions of max-k-cover using the RANDGREEDI template.
Livejournal (|V| =4.8M,|E| = 68.9M) was used as the test
input.

m: Number of machines

Time (in sec) 8 16 32 64 128

local max-k-cover 1.87 0.91 0.34 0.17 0.10
global max-k-cover 0.22 0.67 1.20 247 4.86

thereby increasing the amount of computations required to calculate
the marginal gains to select each seed. This motivates the design of a
streaming based implementation presented next in §3.3.

3.3. Distributed streaming IMM via RANDGREEDI

To overcome the above limitations of RANDGREEDI, we present two
improvements. The first approach (§3.3.1) replaces the global aggrega-
tion algorithm with a streaming max-k-cover technique inside each
round. The second approach (8§3.3.2) reduces communication cost from
the local max-k-cover solvers through a truncation technique.

3.3.1. Streaming computation in the global machine

The first approach to improve RANDGREEDI replaces the global ag-
gregation algorithm with a streaming max-k-cover. The key idea is
to immediately send the local seeds to the global machine, as they are
generated, without waiting for the local machines to complete all their
greedy selections. The global machine then runs a linear time one-pass
streaming algorithm on the incoming data, thus offsetting the compu-
tational expense, and allowing masking of communication overhead.
Streaming can therefore allow tandem executions of global and local
solvers.

Implementing streaming necessitates that the global max-k-cover
algorithm be changed to work with the incoming stream of local seeds
(from different machines). The standard greedy max-k-cover algo-
rithm (Algorithm 2) being offline, is not suitable here. However, with the
RANDGREEDI framework, we are free to choose any algorithm for aggre-
gation. As the max-k-cover problem is an instance of the submodular
maximization with cardinality constraints, we can use one of the recent
direct streaming algorithms designed for max-k-cover [28,29]. In this
work, we employ the (1/2 — §)-approximate streaming algorithm (de-
scribed next) also developed in [28] because it’s nearly linear in runtime,
and absence of any post-processing steps, thus generating the solution
immediately after the streaming phase ends. The challenge here is also
to show that the streaming algorithm provides good quality solution ef-
ficiently.

Algorithm 5 Streaming max-k-cover at the global receiver.

Input: S,: streaming collection of subsets from local senders, k: an integer, u:
upper bound on OPT, /: lower bound on OPT, §
Output: set of seeds of size at most k
: Create B=log,,; [;—‘J buckets
: C, « covering sets of a bucket b, initialized to empty
: S, < set of seed nodes at bucket b, initialized to empty
: fors€ S, do
for all b € [0, B — 1] in parallel do
if |S5,| <k and |5\ C,| > "2~ then
C,=C,U {s}
S, =S8,uid(s)
: b* =argmax, |C,|
: return S,

O ON I h N

=
(=]

Let u and / be an upper and lower bound on optimum coverage, re-
spectively. For a given 0 < < 1/2, we maintain B =log; s [%J buckets

R. Barik, W. Cappa, S.M. Ferdous et al.

indexed by the integers [0, B — 1]. Each bucket b has a lower value cor-
responding to the lower threshold limit representing the bucket, which
is (1 + 6)°. When a streamed-in seed along with its covering subset s
arrives, the algorithm computes the marginal gain of s with respect to
current solution of b, .S;. If the bucket b holds a solution set of size
smaller than k and the marginal gain is greater than (1 + 8)?, the vertex
representing the subset s (denoted by id(s)) is inserted into the current
solution, and the cover set (C,) is updated; otherwise, s is discarded.
This operation is repeated for all the buckets. Since the decision to
recruit a seed into a bucket is independent across buckets, we use mul-
tithreaded parallelism to process the buckets. Once the streaming phase
ends, we output the solution in the bucket (b*) with maximum cover-
age. Algorithm 5 runs in O(6B|S,,|/t) time (where ¢ is the number of
threads), and is shown to be (1/2 — §)-approximate of the optimal cov-
erage [28].

Lemma 3.1. The approximation ratio of GreediRIS with streaming ag-

L (=1/e)(1/2-8) . .
gregation is =2 Jorijrs €M expectation.

Proof. Since the local machines run a greedy algorithm the approxi-
mation guarantee is (1 — 1/e). The streaming algorithm is (1/2 — §)-
approximate. The guarantee follows from Theorem 3.1 and Corol-
lary 2.1. [

3.3.2. Communication reduction using truncation at the senders

In the RANDGREEDI framework for IMM, each machine can send up
to k seeds, implying a total of m - k seeds arriving at the global ma-
chine (be it with or without streaming). Our second improvement to
RANDGREEDI aims at reducing the volume of communication by restrict-
ing the local senders to send only a subset of the k seeds to the global
machine. We refer to this approach as truncated greedy. Specifically, each
local machine (sender) still computes all k local seeds. However, during
streaming each sends only the top a - k seeds (along with their local cov-
ering sets), where 0 < a < 1. We show that the approximation ratio for
the truncated greedy is (1 — e~*) compared to the optimal solution of k
subsets. Thus, the a value provides a trade-off between the scalability
and approximation of the overall INFMAX algorithm.

a

Lemma 3.2. The approximation guarantee of truncated greedy is 1 — e™%.

Proof. We modify the standard analysis of the greedy algorithm for
max-k-cover [24]. Let OPT be the optimal coverage of the k ele-
ments, and x; be the number of new elements covered by the truncated
greedy algorithm in the i-th set it selects. We are interested to bound
the coverage value of the truncated greedy, i.e., Zjai] x;. Since the opti-
mal algorithm uses k sets to cover O PT elements, at iteration (i + 1) of

. OPT-Y'_ x,
the algorithm, there must be a set that covers at least Tj

OPT-Y!_ x;
k))
By a standard induction on the iteration, we can show that Z;.J;ll X; >
1\i+1 P _ i+l
OPT —(1—:)*'OPT.Pluggingini+1=ak, we get 3'._, x; > OPT —
(1= D™*OPT > (1 -eOPT. [

new

elements. So, x;, | >

We prove the following result using a similar technique as
Lemma 3.1.

Lemma 3.3. The approximation ratio of GreediRIS with truncated greedy
in local machines and streaming aggregation is %
tion. Here, 0 < a <1 is the fraction of k local seeds communicated to the

global machine.

— € in excep-

For @ = 1, the approximation ratio of GreediRIS-trunc is the
same as GreediRIS. Lowering the value of a results in the senders com-
municating only the top a-fraction of their local k seeds which results in

Journal of Parallel and Distributed Computing 198 (2025) 105037
RECEIVER

SENDER p, 1<p<m- 1

SAMPLING

UL

LOCAL MAX-K-COVER

. X

INSERT
E INTO
BUCKETS

BUCKETS

T
MAX UTILITY BUCKET

MAX UTILITY
Vs

BEST LOCAL SEED SET

Fig. 2. Schematic illustration of our parallel GreediRIS approach inside one
round.

a reduction of the approximation ratio from that of GreediRIS. For ex-
ample, the drop in approximation ratio compared to GreediRISwhen
a is set at 0.75 and 0.5 is 1.86% and 4.95% respectively. The intu-
ition behind why GreediRIS-trunc provides high quality solutions
in practice (as seen later in §4.3) despite the reduced approximation
guarantee, lies in the submodular property exhibited by the local seeds.
For 0 <i <j < k, the marginal utility of the i-th seed will always be
greater than or equal to that of the j-th out of the k local seeds. This im-
plies, stronger the submodular behavior of the underlying function, the
greater is the benefit from truncation as the early choices are likely to
provide significant gains. This also means that if a submodular function
is close to a linear function, truncation might not be that useful.

Extension to other RIS-based INFMAX methods: Our GreediRIS ap-
proach also extends to OPIM [9], which is another RIS-based approach
to INFMAX. Unlike IMM, OPIM delivers an instance-wise approximation
guarantee in each computation round and is suitable for online process-
ing of INFMAX. The instance-specific quality guarantees are achieved
through partitioning the samples generated in each round (using the
same Sample (.) subroutine as IMM) into two halves R; and R,. The
first is used to select an intermediate solution for that round (same mech-
anism as the SelectSeeds (.) step in IMM). The utility of this solution
on R, is used as a validation score that is utilized by OPIM’s version
of the CheckGoodness subroutine to come up with the approximation
guarantee for that round. Algorithmically, OPIM bears many similarities
to IMM since it proceeds in rounds consisting of a sampling and seed se-
lection phase and, as such, is also a suitable candidate for GreediRIS.
We include experiments integrating OPIM with GreediRIS (§4.4).

3.4. Parallelization and implementation

Next, we present the parallelization details for the overall
GreediRIS distributed streaming workflow. A schematic illustration
of our GreediRIS workflow is shown in Fig. 2.

S1) Distributed sampling:
The input graph G = (V, E) is loaded on all machines. Using G, all
machines generate =~ 6 /m samples each. This step supports multi-
threaded parallelism within each machine.

S2) All to all:
The list of vertex ids [0,n — 1] is partitioned uniformly at random
so that each rank p is assigned ~ n/m ids, represented by V). Subse-
quently, using an MPI all-to-allv communication, we transport

R. Barik, W. Cappa, S.M. Ferdous et al.

all RRR set ids that contain any given vertex v € V), to rank p. At the
end of this step, each machine stores the RRR set ids correspond-
ing to all vertex ids in its assigned partition (Vp)' Recall the use of
S(u) for this covering set for each vertex id u € V. Henceforth, we
distinguish between a “sender” process and a “receiver” process.
In our streaming implementation, there are m — 1 senders (ranks
[1,m — 1]) and one receiver process (rank 0).
S3) Sender process:
A sender p uses the collection of its ~ n/m covering sets to detect
up to k local seeds. Let [xg, x’l’ L XZ_ ,] denote these seeds. We use
the lazy greedy max-k-cover algorithm (Algorithm 2) that inter-
nally maintains a max heap to identify the next best seed, starting
with x(’;. To support streaming, the sender process sends each seed
xl’.’ along with its covering subset to the receiver process as and
when it is identified. This is implemented using a nonblocking send
to minimize waiting at the sender process. The sender concludes
when all of its k seeds are generated. Upon completion, it alerts the
receiver of its termination.
For the truncated version (§3.3.2), when the truncated limit is
reached no more sends happen from that sender. But the sender
continues to generate all its k seeds locally. The idea is to enable
comparison at the end with the global solution.
Receiver process:
After participating in the initial sampling, the role of the receiver
switches to: a) aggregating all the seeds sent by all senders; and
b) performing the global max-k-cover using the multi-threaded
streaming algorithm in Algorithm 5. Let ¢ denote the number of
threads at the receiver. Thread rank 0 is a dedicated communicating
thread to listen to the senders using a nonblocking receive. The re-
maining (¢ — 1) threads parallelize the insertion of seeds into the B
buckets. We refer to these as bucketing threads. We assign [B/(t—1)]
threads per bucket. When a new seed x (along with its covering set
S(x)) is received, the communicating thread places (x, S(x)) on a
queue and atomically sets a flag corresponding to that index. For
this purpose, the receiver maintains a shared array A of maximum
size m - k. Each bucketing thread monitors the flag corresponding
to the next index yet to be read. When the flag is set, that means
there is a new element x in that index, then all bucketing threads
read x and insert them into their respective buckets independently.
This allows for a lock-free (atomic) update. This also allows concur-
rent processing of the bucketing threads with the communicating
thread. Finally, when all senders have alerted the receiver with ter-
mination, the receiver compares the best solution across the buckets
with the best local solutions at the senders, and outputs the final
seed set.

S4

—

Runtime complexity: As for the runtime complexity, step S1 (sampling)
takes @(0/m) - ¢, where ¢, is the average length of a sample. Given the
same set of edge probabilities, this average is expected to be more for
the IC model than for LT. Step S2 is an all-to-all communication step and
can take O(zm + yﬁ&) in the worst-case, where 7 and u are the network
latency and reciprocal of bandwidth respectively. Note that the size of
each covering set to be received is upper bounded by 6 and in practice is
likely to be less (depends on its n/m vertex subset). Also, even though the
receiver process sends out the samples it generated, it will not receive
any data (from the all-to-all) as all the local max-k-cover happen at
the senders. The remaining part of the sender process (S3) is consumed
in generating local seeds from its local (n/m) covering subsets. Using
the greedy algorithm, this takes O(%).

As for the receiver process (S4), the communication time is domi-
nated by the nonblocking receive to collect all the streamed seeds, and
the computation time by the time to insert into the local B buckets.
However, considering masking and the parallel processing of buckets,
we expect communication (or wait time for data to arrive) to dominate
the total time—which is desirable to ensure the receiver is available
for all senders. The u/! ratio of the number of buckets in the stream-

Journal of Parallel and Distributed Computing 198 (2025) 105037
Table 3
Key details for our test inputs SNAP [31] and KONECT [32]). Avg. is
the average out-degree and Max. is the maximum out-degree.

Input #Vertices #Edges Avg. Max.
Github 37,700 285,000 7.60 9,446
HepPh 34,546 421,578 24.41 846
DBLP 317,080 1,049,866 6.62 343
Pokec 1,632,803 30,622,564 37.51 20,518
LiveJournal 4,847,571 68,993,773 28.26 22,887
Orkut 3,072,441 117,184,899 76.28 33,313
Orkut-group 8,730,857 327,037,487 56.81 318,240
Wikipedia 13,593,032 437,217,424 22.56 5,576,228
Friendster 65,608,366 1,806,067,135 27.528 3615

ing algorithm (§3.3) can be shown to be k. This is because the optimal
cover could be at most k times of the cover of a set with the maximum
marginal gain. Using this, the runtime of the streaming computation in
the receiver is O(mk6 - B) = (mk9 . (log(1+5) k)).

Memory complexity: Here we only discuss the memory complexity
of the streaming algorithm. Each of the bucket needs to store the to-
tal cover of its partial solution. Since total cover could be at most
6, we require O(f) memory per bucket. Each bucket also needs to
store the partial solution of size (k). Putting these together, the to-
tal memory complexity of the streaming algorithm in the receiver is
O ((0 + k) -log (1, 5 k). This is more space efficient than any offline al-
gorithm that would require storing the complete incoming data, i.e.,
O(mk6) elements.

Software availability: GreediRIS is implemented using C/C++, MPI
and OpenMP, and is open-sourced at the GreediRIS Github repository
[30].

4. Experimental evaluation
4.1. Experimental setup

Platform: All experiments were conducted on the NERSC Perlmutter
supercomputer, a HPE Cray EX system. For our experiments, we used
the CPU nodes (machines), each of which consists of two AMD EPYC
7763 (Milan) CPUs (with 64 cores per CPU), 256 MB L3 cache, 512
GB of DDR4 memory, and a HPE Slingshot 11 NIC. Experiments were
performed using up to m = 512 nodes (with a total of 32K cores). All
runtimes are measured in terms of wall clock time and reported in sec-
onds, and all distributed runs were executed by binding one MPI rank
per node.

Input data: We use nine real world networks from SNAP [31] and
KONECT [32] summarized in Table 3. The inputs cover a wide range
in sizes, and application domains such as social networks, citation net-
works and web documents. Since edge probabilities are not available
for these public networks, consistent with practice [12,13,33], we gen-
erated edge probabilities from a uniform random distribution between
[0,0.1]. Note that the weighted cascade (WC) model (i.e., edge weight
from node u to v is given by 1/InDegree(v))—as has been used in
[14]—is not an option as it has been shown [34] to not translate to
more generic diffusion models.

Evaluation methodology: Our experiments include both IC and LT dif-
fusion models. For related work comparison, we compared our new
implementations against two state-of-the-art distributed IMM methods,
namely Ripples [12] and DiIMM [14]. Ripples is available as an open
source software [35] and we compared with the C/C++ and OpenMP
+ MPI distributed implementation. The DiIMM software however was

https://github.com/ReetBarik/GreediRIS

R. Barik, W. Cappa, S.M. Ferdous et al.

Table 4

Performance of GreediRIS implementations, Ripples [12] and our implemen-
tation of DiIMM [14]. All results reported were using m = 512 nodes and 32K
cores in distributed memory. GreediRIS-trunc runs were performed using
a =0.125. Bold values indicate the best entries for that input.

Diffusion: LT Time (in Sec.)

Input Ripples [8] DiIMM [14] GreediRIS GreediRIS-trunc
Github 108.3 114.7 1.8 0.2

HepPh 273.1 270.1 1.8 0.5

DBLP 365.0 357.7 3.7 3

Pokec 435.1 434.9 11.6 9.5

LiveJournal 482.1 478.0 22.0 22.9

Orkut 463.4 458.1 18.7 18.2

Orkut-group 549.4 564.6 81.7 78.6

wikipedia 537.0 528.4 45.0 46.6

friendster 948.2 994.9 746.1 685.9

Diffusion: IC Time (in Sec.)

Github 122.0 112.0 0.9 0.3
HepPh 175.0 185.5 1.5 0.6
DBLP 266.0 274.7 2.4 1.1
Pokec 96.0 101.4 77.4 30.3
LiveJournal 129.0 146.4 100.0 64.3
Orkut 74.5 88.2 32.5 6.3
Orkut-group 164.3 181.1 119.1 60.6
wikipedia 360.3 287.5 256.0 222
friendster 278.0 319.0 361.0 211.2

not available as of this writing.! Therefore, to enable a comparison, we
implemented our own version of their method into the Ripples open
source package [14]. Additionally, we also added the functionality of
using OPIM [9] (instead of IMM) as the underlying RIS-based INFMAX
strategy into GreediRIS.

For our proposed approach, GreediRIS, we tested two variants of
our distributed algorithm:

* GreediRIS: uses the distributed streaming algorithm described in
§3.3 and its parallelization in §3.4;

* GreediRIS-trunc: uses the truncated extension of GreediRIS,
described in §3.3.2, with « fraction of the seeds communicated.

All runs not using OPIM were carried out for k = 100 and precision
parameter € = 0.13. For streaming, we chose § = 0.077—as this configu-
ration set the number of buckets approximately equal to the number of
available threads (63) at the global receiver. GreediRIS-trunc was
run for values of a € (0,1]. For the experiments using OPIM, we set
k =1000, e =0.01, and adjusted 6 = 0.0562 to maintain the number of
buckets at 63.

All implementations were compiled using (GCC 11.2.0; optimization
flags -03 and -mtune=native), and MPI library Cray-mpich 8.1.24.
For quality, we use the average number of node (vertex) activations
over 5 simulations of the diffusion models (IC or LT) from the seed sets
obtained by Ripples as the baseline, with the same for other implemen-
tations presented as a percentage change.

4.2. Comparative evaluation

Table 4 shows comparative results in terms of runtime perfor-
mance. GreediRIS-trunc was the fastest for nearly all inputs,
with GreediRIS coming a close second. For all inputs tested, both
GreediRIS implementations significantly outperformed Ripples and
DiIMM. For instance, for LT, the speedups of GreediRIS-trunc over
Ripples ranged from 1.32x (for friendster) to 357.78x (for Github),
with a geometric mean of 28.99x across all inputs. For IC, the corre-

1 We were not able to find its public repository and the authors did not respond
despite multiple requests.

Journal of Parallel and Distributed Computing 198 (2025) 105037
2048 -

1024 -
512 -
256 - \
128 -

o
Q
2
(0]
E 64-
'_
32-
16 -
8- —e— Pokec —%— Orkut —— wikipedia
—e— LiveJournal =—e— Orkut-group friendster
4 - ' ' ' ' ' ! !
8 16 32 64 128 256 512

m: Number of machines

Fig. 3. Strong scaling performance of GreediRIS for different inputs, varying
m up to 512 nodes for the IC model. All times are in seconds.

sponding speedups ranged from 1.38% (for friendster) to 526.13% (for
Github), with a geometric mean of 36.35X across all inputs. The results
also show that GreediRIS benefits in runtime savings from trunca-
tion. Overall, these runtime results uniformly show the effectiveness
of our RANDGREEDI-based distributed streaming as well as truncation
for the seed selection step. The variations of speedups with inputs and
models used are to be expected due to the effects of graph topology
and stochasticity of the process. Relative to IC, the performance bene-
fits from GreediRIS under LT are more because it has been known to
generate shallower BFS traversals (i.e., shorter RRR set sizes).

We also compared the quality of seeds generated by GreediRIS
and GreediRIS-trunc, against the quality of seeds generated by Rip-
ples. On average across all data sets, we observed that while using
m =512 nodes, the expected influence achieved by the seeds generated
by GreediRIS and GreediRIS-trunc implementations was 2.72%
away from the influence generated by Ripples. This is despite reduced
worst-case approximations (as shown in the Lemmas of §3.3) relative to
Ripples which is (1 — 1 /e — €)-approximate. For instance, our experimen-
tal settings for e = 0.13 and 6 = 0.077 yield a worst-case approximation
ratio of 0.123 in expectation for GreediRIS (compared to a 0.5 ratio for
Ripples). These results show that despite being weaker in approximation
guarantee, the practical quality of GreediRIS and GreediRIS-trunc
is comparable to Ripples, while providing significant performance ad-
vantage.

4.3. Performance evaluation for GreediRIS

Next, we present a detailed parallel performance evaluation of our
GreediRIS implementations. We first present the strong scaling results
for our main GreediRIS implementation. Fig. 3 shows the strong scal-
ing results. In the interest of space, we show results using the IC model.
Results for smaller inputs (Github, HepPh, DBLP) that took less than 3
seconds, are omitted. On the remaining inputs, in general we see better
scaling behavior as the input size increases—e.g., scaling on LiveJour-
nal is near-linear until m = 128, while the further runtime reductions are
continued to be achieved for up to m = 256 with Orkut-group, and up
to m = 512 with Wikipedia and friendster. In general, we observed that
GreediRIS is able to push the scaling to larger number of nodes, be-
yond what Ripples achieves. This is illustrated in Fig. 4 where we see the
scaling benefits of using GreediRIS over Ripples for a representative
input like Orkut-group. GreediRIS-trunc helps push this boundary
even further with more results shown at the end of this Section.

Fig. 5 shows the detailed runtime breakdown for a representative in-
put LiveJournal for the IC diffusion model. For sender time, we used the
time for the longest running sender. As Fig. 5a corresponding to the total

R. Barik, W. Cappa, S.M. Ferdous et al.

-®- GreediRIS-trunc
—e— GreediRIS
—e— Ripples

210 -

20

28 -

Time (sec)

27,

26

8 16 32 64 128 256 512
m: Number of nodes
Fig. 4. Scaling of the total execution time for our methods GreediRIS and

GreediRIS-trunc on up to 512 Perlmutter nodes for input Orkut-group. Also
shown is the scaling behavior of the state-of-the-art tool Ripples.

breakdown shows, the total time is closer to the maximum of the sender
and receiver times than the sum, and these two times are nearly com-
parable — suggesting the effectiveness of streaming. The sender times
were evenly split between sampling and all-to-all. We see the sampling
and all-to-all times scaling with m. The seed selection, however, starts
to consume more time at the receiver for larger m (> 256) settings.

This is something the truncated version (GreediRIS-trunc) is bet-
ter equipped to address, as we will see next.

We also examine the receiver process time closely for the same in-
put in Fig. 5b, since the global seed selection using streaming is carried
out at the receiver. Recall that at the receiver, thread rank 0 is the com-
municating thread, as it monitors the communication channel by doing a
non-blocking receive, and when the next seed arrives, it pushes it to the
local queue. All other ¢ — 1 threads (i.e., 63) are bucketing threads, han-
dling insertions individually into a subset of [B/(t — 1)] buckets. The
results show that the communicating thread spends most of its time on

Total SeedSelect All2All Sampling
Receiver Sender Total

1500-
)
[i
£ 1000
=
c
o
=}
3
(%3
(]
X
w

500-

0-

24 25 28 24 28 28 24 25 28

m: Number of nodes

(a) LiveJournal: Total time breakdown

Journal of Parallel and Distributed Computing 198 (2025) 105037
the non-blocking receive, which implies high availability to the senders.
The bucketing threads generally take significantly much less time, and
their running times are subsumed within the communicating thread’s
time. Note that there are 63 threads to handle the buckets.

Evaluation of GreediRIS-trunc: In this section, we tested the frame-
work’s truncated variant, GreediRIS-trunc (83.3.2) by varying the
parameter «. Note that a is the fraction of seeds sent from each sender
to the global receiver. Increasing the number of nodes leads to a pro-
portional increase in the communication and computation performed by
the global receiver.

The parameter a provides a way to cap this load on the receiver
and extend scaling. This can be seen in Fig. 6(a), where the parallel
runtime for GreediR1IS starts to plateau for GreediRIS for m > 256,
while for GreediRIS-trunc it continues to decrease (mainly due to
decrease in a). While decreasing « results in a lower approximation
guarantee (Lemma 3.3) and consequently degrade quality, our experi-
ments showed this to be negligible (less than 0.36%) in practice for any
given m.

4.4. Extension of GreediRIS to OPIM

In this section, we show OPIM results integrated to the GreediRIS
framework. Consistent with the large scale experimental settings of [9],
we set k = 1000, € =0.01, and terminate when the number of generated
samples exceeds 220. We set 6 = 0.0562 to ensure the number of buckets
at the receiver is 63 (1 communicating thread vs. 63 bucketing threads).
The number of nodes was set to m = 512.

For evaluation, we used the GreediRIS-trunc implementation
that uses OPIM internally, and studied the seed-selection performance.
Results are shown in Table 5. As can be observed, we are able to achieve
significant reduction in time with increasing «, while maintaining the
reported approximation guarantee (as reported by OPIM using the mar-
tingale based analysis in [9]).

5. Conclusions and future work

We presented GreediRIS, a new scalable distributed streaming al-
gorithm and its parallel implementations for INFMAX. New ideas in-

Total MPI_lrecv Push to Buckets Insert into Buckets

Bucketing Thread Communicating Thread Receiver Total

750-

500-

Execution Time (s)

250-

24 25 28 24 28 28 PL L
m: Number of machines

(b) LiveJournal: Receiver time breakdown

Fig. 5. Parallel runtime breakdown for input LiveJournal (Diffusion model IC) for GreediRIS: by the receiver, sender (longest running), and the total times. Note that
in streaming, senders and the receiver run in parallel. The plot corresponding to the receiver shows the breakdown between its communicating thread and bucketing
threads. Note that the majority of the SeedSelect time on the receiver is idle time, as senders participate in the all-to-all and then perform their local seed selections.

R. Barik, W. Cappa, S.M. Ferdous et al.

(a) GreediRIS
400 -
[Total
S 300- [ZZA Seed Selection
Q
2
© 200 -
£
o - - -
0- ' ' ' ' '
32 64 128 256 512
a=1 (b) GreediRIS-trunc
400 -
[Total
o 300- EZZ1 Seed Selection
8 a=0.5
o 200-
£ a=0.25
= 100- - @=0125 [0eos
32 64 128 256 512

m: Number of nodes

Fig. 6. Strong scaling plot of GreediRIS (top) and GreediRIS-trunc (bot-
tom) to up to 512 nodes. The seed selection step is shown as the shaded region
representing its fraction of the total runtime.

Table 5

Evaluation of GreediRIS-trunc using the OPIM RIS-strategy
[9], and using parameters: {k = 1000, & = 0.01, target 6 ~ 2%,
6 =0.0562}. All runs were performed on the friendster input on

m =512 nodes.
Truncation factor a: 1 0.5 0.25 0.125
Seed select time (sec): 381.42 200.59 99.30 95.43
OPIM approx. guarantee: 0.66 0.67 0.68 0.69

clude a) leveraging the RANDGREEDI framework for distributed sub-
modular optimization for INFMAX, b) introducing streaming into dis-
tributed max-k-cover allowing efficient masking of communication
overheads through overlapped computation; and c) truncation to further
reduce communication burden. The experimental study demonstrated
that GreediRIS significantly outperforms state-of-the-art distributed
parallel implementations with comparable quality. The algorithms pre-
sented are generalizable to any other monotone submodular optimiza-
tion problem. Future extensions and directions could include: i) enabling
streaming during the sampling phase to mask all-to-all communication
costs; ii) further optimizations to increase problem size reach to solve
larger problems on smaller systems; iii) GPU acceleration for sampling;
and iv) extension to other monotone submodular optimization prob-
lems.

CRediT authorship contribution statement

Reet Barik: Writing — review & editing, Writing — original draft,
Validation, Software, Methodology, Conceptualization. Wade Cappa:
Writing — review & editing, Writing — original draft, Validation, Soft-
ware, Methodology. S.M. Ferdous: Writing — review & editing, Writing —
original draft, Methodology, Formal analysis, Conceptualization. Marco
Minutoli: Writing — review & editing, Writing — original draft, Vali-
dation, Software, Methodology. Mahantesh Halappanavar: Writing —
review & editing, Writing — original draft, Software, Methodology, Fund-
ing acquisition. Ananth Kalyanaraman: Writing — review & editing,
Writing — original draft, Project administration, Methodology, Investi-
gation, Funding acquisition, Conceptualization.

Declaration of competing interest
The authors declare that they have no known competing financial

interests or personal relationships that could have appeared to influence
the work reported in this paper.

10

Journal of Parallel and Distributed Computing 198 (2025) 105037
Acknowledgment

This work is in part supported NSF grants CCF 2316160 and CCF
1919122 to Washington State University. At Pacific Northwest National
Laboratory, this work is also supported by the U.S. Department of Energy
through the Exascale Computing Project (17-SC-20-SC) (ExaGraph) and
Laboratory Directed Research and Development (LDRD).

Data availability
All data sets used are public and cited in the paper.

References

[1] P. Domingos, M. Richardson, Mining the network value of customers, in: Proceedings
of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2001, pp. 57-66.

[2] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J.M. VanBriesen, N.S. Glance, Cost-
effective outbreak detection in networks, in: Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ACM, 2007,
pp. 420-429.

[3] C. Budak, D. Agrawal, A.E. Abbadi, Limiting the spread of misinformation in social
networks, in: Proceedings of the 20th International Conference on World Wide Web,
WWW, ACM, 2011, pp. 665-674.

[4] M. Ye, X. Liu, W. Lee, Exploring social influence for recommendation: a generative
model approach, in: Proc. of the 35th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, SIGIR, ACM, 2012, pp. 671-680.

[5] D. Kempe, J.M. Kleinberg, E. Tardos, Maximizing the spread of influence through a
social network, in: Proceedings of the Ninth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Washington, DC, USA, August 24-27,
2003, 2003, pp. 137-146.

[6] M. Azaouzi, W. Mnasri, L.B. Romdhane, New trends in influence maximization mod-
els, Comput. Sci. Rev. 40 (2021) 100393.

[7] G.L. Nemhauser, L.A. Wolsey, M.L. Fisher, An analysis of approximations for maxi-
mizing submodular set functions—I, Math. Program. 14 (1978) 265-294.

[8] Y. Tang, Y. Shi, X. Xiao, Influence maximization in near-linear time: a martingale
approach, in: Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, 2015, pp. 1539-1554.

[9] J. Tang, X. Tang, X. Xiao, J. Yuan, Online processing algorithms for influence max-
imization, in: Proceedings of the 2018 International Conference on Management of
Data, 2018, pp. 991-1005.

[10] C. Borgs, M. Brautbar, J. Chayes, B. Lucier, Maximizing social influence in nearly
optimal time, in: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SIAM, 2014, pp. 946-957.

[11] Y. Tang, X. Xiao, Y. Shi, Influence maximization: near-optimal time complexity meets
practical efficiency, in: Proceedings of the 2014 ACM SIGMOD International Confer-
ence on Management of Data, 2014, pp. 75-86.

[12] M. Minutoli, M. Halappanavar, A. Kalyanaraman, A. Sathanur, R. Mcclure, J. McDer-
mott, Fast and scalable implementations of influence maximization algorithms, in:
2019 IEEE International Conference on Cluster Computing, CLUSTER, IEEE, 2019,
pp. 1-12.

[13] M. Minutoli, M. Drocco, M. Halappanavar, A. Tumeo, A. Kalyanaraman, cuRipples:
influence maximization on multi-gpu systems, in: Proceedings of the 34th ACM In-
ternational Conference on Supercomputing, 2020, pp. 1-11.

[14] J. Tang, Y. Zhu, X. Tang, K. Han, Distributed influence maximization for large-scale
online social networks, in: 2022 IEEE 38th International Conference on Data Engi-
neering, ICDE, IEEE, 2022, pp. 81-95.

[15] B. Mirzasoleiman, A. Badanidiyuru, A. Karbasi, J. Vondrak, A. Krause, Lazier than
lazy greedy, in: Proceedings of the Twenty-Ninth AAAI Conference on Artificial In-
telligence, AAAI Press, 2015, pp. 1812-1818.

[16] R. da Ponte Barbosa, A. Ene, H.L. Nguyen, J. Ward, The power of randomization: dis-
tributed submodular maximization on massive datasets, in: Proceedings of the 32nd
International Conference on Machine Learning, ICML, vol. 37, 2015, pp. 1236-1244,
JMLR.org.

[17]1 W. Chen, C. Wang, Y. Wang, Scalable influence maximization for prevalent viral
marketing in large-scale social networks, in: Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ACM, 2010,
pp. 1029-1038.

[18] W. Chen, Y. Yuan, L. Zhang, Scalable influence maximization in social networks
under the linear threshold model, in: The Proc. of 10th IEEE International Conference
on Data Mining, ICDM, IEEE Computer Society, 2010, pp. 88-97.

[19] W. Chen, An issue in the martingale analysis of the influence maximization algorithm
imm, arXiv:1808.09363, 2018.

[20] M. Minutoli, P. Sambaturu, M. Halappanavar, A. Tumeo, A. Kalyananaraman, A.
Vullikanti, PREEMPT: scalable epidemic interventions using submodular optimiza-
tion on multi-gpu systems, in: SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, IEEE, 2020, pp. 1-15.

http://refhub.elsevier.com/S0743-7315(25)00004-8/bib09EA1DF26C5617665062B4C1C582F451s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib09EA1DF26C5617665062B4C1C582F451s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib09EA1DF26C5617665062B4C1C582F451s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib5BAFEFE24210250693C6054D04E8F650s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib5BAFEFE24210250693C6054D04E8F650s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib5BAFEFE24210250693C6054D04E8F650s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib5BAFEFE24210250693C6054D04E8F650s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bibA2DD05566C73F4B30B1E3A3BEEC4A7E2s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bibA2DD05566C73F4B30B1E3A3BEEC4A7E2s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bibA2DD05566C73F4B30B1E3A3BEEC4A7E2s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib1765BFA1593315262CB77B13567DDDF0s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib1765BFA1593315262CB77B13567DDDF0s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib1765BFA1593315262CB77B13567DDDF0s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bibF5199F83E8B0EBDA78918B31D0816C9Cs1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bibF5199F83E8B0EBDA78918B31D0816C9Cs1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bibF5199F83E8B0EBDA78918B31D0816C9Cs1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bibF5199F83E8B0EBDA78918B31D0816C9Cs1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib63D1C18E61E4A98895FA1CB356FC9FE4s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib63D1C18E61E4A98895FA1CB356FC9FE4s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bibFCFE26EF6931B659E5037961D8431B7As1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bibFCFE26EF6931B659E5037961D8431B7As1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bibC6877E612BDB912EE19CDD6536C56B07s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bibC6877E612BDB912EE19CDD6536C56B07s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bibC6877E612BDB912EE19CDD6536C56B07s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib44BA37F81A1F332E4EC9D7E3E71B26E4s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib44BA37F81A1F332E4EC9D7E3E71B26E4s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib44BA37F81A1F332E4EC9D7E3E71B26E4s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bibA3EA349011A3F997998B4427803D76C9s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bibA3EA349011A3F997998B4427803D76C9s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bibA3EA349011A3F997998B4427803D76C9s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib8EDBF9BE0DE517D1F9A4B986AB42A9F1s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib8EDBF9BE0DE517D1F9A4B986AB42A9F1s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib8EDBF9BE0DE517D1F9A4B986AB42A9F1s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bibEEC7F4CE9A702CFF3F0C4B95E15D85B4s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bibEEC7F4CE9A702CFF3F0C4B95E15D85B4s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bibEEC7F4CE9A702CFF3F0C4B95E15D85B4s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bibEEC7F4CE9A702CFF3F0C4B95E15D85B4s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib09CF9F9099B26078F98B98D4DB403DC8s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib09CF9F9099B26078F98B98D4DB403DC8s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib09CF9F9099B26078F98B98D4DB403DC8s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib0D43BA801CB24EC384A6D0EB264D9EFEs1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib0D43BA801CB24EC384A6D0EB264D9EFEs1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib0D43BA801CB24EC384A6D0EB264D9EFEs1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bibA63FE8B35AEDF8E8920472AA67C6542Es1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bibA63FE8B35AEDF8E8920472AA67C6542Es1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bibA63FE8B35AEDF8E8920472AA67C6542Es1
http://JMLR.org
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib69919C9B8228650C9AB9938BE509ED4Bs1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib69919C9B8228650C9AB9938BE509ED4Bs1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib69919C9B8228650C9AB9938BE509ED4Bs1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib69919C9B8228650C9AB9938BE509ED4Bs1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib70E16B40B1E9916570AB5079BBE2B311s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib70E16B40B1E9916570AB5079BBE2B311s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib70E16B40B1E9916570AB5079BBE2B311s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib464BA002C07CA4B83D1C150EFF47D896s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib464BA002C07CA4B83D1C150EFF47D896s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib3A6DF4344A380C099FA57C89248A147Cs1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib3A6DF4344A380C099FA57C89248A147Cs1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib3A6DF4344A380C099FA57C89248A147Cs1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib3A6DF4344A380C099FA57C89248A147Cs1

R. Barik, W. Cappa, S.M. Ferdous et al.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

R. Barik, M. Minutoli, M. Halappanavar, A. Kalyanaraman, Impart: a partitioning-
based parallel approach to accelerate influence maximization, in: 2022 IEEE 29th
International Conference on High Performance Computing, Data, and Analytics,
HiPC, IEEE, 2022, pp. 125-134.

B. Mirzasoleiman, A. Karbasi, R. Sarkar, A. Krause, Distributed submodular
maximization: identifying representative elements in massive data, in: Proc. of
the 27th Annual Conference on Neural Information Processing Systems, 2013,
Pp. 2049-2057.

V.S. Mirrokni, M. Zadimoghaddam, Randomized composable core-sets for dis-
tributed submodular maximization, in: Proceedings of the Forty-Seventh Annual
ACM on Symposium on Theory of Computing, STOC, ACM, 2015, pp. 153-162.

U. Feige, A threshold of In n for approximating set cover, J. ACM 45 (1998) 634-652,
https://doi.org/10.1145/285055.285059.

M. Minoux, Accelerated greedy algorithms for maximizing submodular set functions,
in: Proceedings of the 8th IFIP Conference on Optimization Techniques, Springer,
1977, pp. 234-243.

A. Gupta, A. Roth, G. Schoenebeck, K. Talwar, Constrained non-monotone submodu-
lar maximization: offline and secretary algorithms, in: Proc. of the 6th International
Workshop of Internet and Network Economics, WINE, in: Lecture Notes in Computer
Science, vol. 6484, Springer, 2010, pp. 246-257.

A. Badanidiyuru, J. Vondrak, Fast algorithms for maximizing submodular functions,
in: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA, SIAM, 2014, pp. 1497-1514.

A. McGregor, H.T. Vu, Better streaming algorithms for the maximum coverage prob-
lem, Theory Comput. Syst. 63 (2019) 1595-1619, https://doi.org/10.1007/500224-
018-9878-x.

M. Bateni, H. Esfandiari, V.S. Mirrokni, Almost optimal streaming algorithms for
coverage problems, in: Proceedings of the 29th ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA, ACM, 2017, pp. 13-23.

R. Barik, et al., GreediRIS: scalable influence maximization using distributed stream-
ing maximum cover, https://github.com/ReetBarik/GreediRIS, 2023. (Accessed July
2023), Online.

J. Leskovec, A. Krevl, SNAP datasets: Stanford large network dataset collection,
http://snap.stanford.edu/data, 2014.

J. Kunegis, Konect: the Koblenz network collection, in: Proceedings of the 22nd In-
ternational Conference on World Wide Web, 2013, pp. 1343-1350.

Y. Li, J. Fan, Y. Wang, K. Tan, Influence maximization on social graphs: a sur-
vey, IEEE Trans. Knowl. Data Eng. 30 (2018) 1852-1872, https://doi.org/10.1109/
TKDE.2018.2807843.

A. Arora, S. Galhotra, S. Ranu, Debunking the myths of influence maximization:
an in-depth benchmarking study, in: Proceedings of the 2017 ACM International
Conference on Management of Data, 2017, pp. 651-666.

M. Minutoli, Ripples: a C++ library of parallel implementations for distributed in-
fluence maximization, https://github.com/pnnl/ripples/tree/master, 2019.

Reet Barik received his bachelor’s degree in Computer Sci-
ence and Engineering from the Maulana Abul Kalam Azad Uni-
versity of Technology, West Bengal, India, in 2017, and a M.S.
degree in Computer Science from Washington State University,
Pullman, WA, USA, in 2019 where he is currently a PhD can-
didate. His research area is at the intersection of parallel graph
algorithms, combinatorial optimization, and high performance
computing under the general umbrella of scalable data science.

11

Journal of Parallel and Distributed Computing 198 (2025) 105037

Wade Cappa received his bachelor’s degree in Computer
Science from Washington State University in 2023. Since then,
he has been working at Palantir Technologies on network-to-
network data sharing and consistency systems. Wade started
working on HPC applications while he was studying for his un-
dergraduate degree, and has continued working on research in his
free time. Since graduation, his research has focused on parallel
and distributed algorithms and their applications.

Dr. SM Ferdous joined the Pacific Northwest National Lab-
oratory as a Linus Pauling Postdoctoral fellow in June 2022 and
is now a data scientist at PNNL. He received his Bachelor’s and
master’s in computer science and engineering from Bangladesh
University of Engineering and Technology (BUET), and PhD from
Purdue University. His research interest is in combinatorial scien-
tific computing, focusing on computing under various constraints
such as memory limitations, dynamic data, or approximation al-
gorithms.

Dr. Marco Minutoli is a data scientist at the Pacific North-
west National Laboratory. He received his Bachelor of Science
in Computer and Telecommunication Engineering from Univer-
sity of Messina, Messina, Italy, in 2008, his Master of Science in
Computer Engineering from Politecnico di Milano, Milan, Italy,
in 2014, and his PhD in Computer Science from Washington State
University, Pullman, WA, in 2021. His research focuses on the de-
sign of parallel graph algorithms for combinatorial scientific com-
puting and on the definition of HW/SW co-design and High-Level
Synthesis methodologies and their compilation and optimization
pipelines for the generation of custom computing devices optimized for irregular applica-
tions.

Dr. Mahantesh Halappanavar is a chief data scientist at the
Pacific Northwest National Laboratory, where he serves as the
group lead of the Data Science and Machine Intelligence group.
He also holds a joint appointment as adjunct faculty in computer
science at the School of Electrical Engineering and Computer Sci-
ence at Washington State University in Pullman. His research has
spanned multiple technical foci and includes combinatorial scien-
tific computing, parallel graph algorithms, artificial intelligence
and machine learning, and the application of graph theory and
game theory to solve problems in application domains, such as
scientific computing, power grids, cybersecurity, and life sciences.

Dr. Ananth Kalyanaraman received his bachelor’s degree
from the Visvesvaraya National Institute of Technology, Nagpur,
India, in 1998, and the M.S. and Ph.D. degrees from Iowa State
University, Ames, IA, USA, in 2002 and 2006, respectively. He is
a Professor and Boeing Centennial Chair of computer science, and
the Interim Director for the School of Electrical Engineering and
Computer Science, Washington State University, Pullman, WA,
USA. He also holds a joint appointment with Pacific Northwest
National Laboratory, Richland, WA, USA. Ananth is the Direc-
tor for the AgAID Institute. His research focuses on developing
parallel algorithms and software for data-intensive problems originating in the areas of
computational biology and graph-theoretic applications.

http://refhub.elsevier.com/S0743-7315(25)00004-8/bib8EEA4A187BE92B6EDF4D27CF2ADFBCC2s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib8EEA4A187BE92B6EDF4D27CF2ADFBCC2s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib8EEA4A187BE92B6EDF4D27CF2ADFBCC2s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib8EEA4A187BE92B6EDF4D27CF2ADFBCC2s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib3D27E89771BB79728101E82BFA39DA6Ds1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib3D27E89771BB79728101E82BFA39DA6Ds1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib3D27E89771BB79728101E82BFA39DA6Ds1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib3D27E89771BB79728101E82BFA39DA6Ds1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib34C38E167F674E94EB0FF22ED5DBE16Bs1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib34C38E167F674E94EB0FF22ED5DBE16Bs1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib34C38E167F674E94EB0FF22ED5DBE16Bs1
https://doi.org/10.1145/285055.285059
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib2313DF3DA314B51323AA4F85A84A1B0Cs1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib2313DF3DA314B51323AA4F85A84A1B0Cs1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib2313DF3DA314B51323AA4F85A84A1B0Cs1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib47F69075C80C4358C8A85A974225F77Bs1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib47F69075C80C4358C8A85A974225F77Bs1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib47F69075C80C4358C8A85A974225F77Bs1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib47F69075C80C4358C8A85A974225F77Bs1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib9E1DADB042D98B59A54117BF8E886EB1s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib9E1DADB042D98B59A54117BF8E886EB1s1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib9E1DADB042D98B59A54117BF8E886EB1s1
https://doi.org/10.1007/s00224-018-9878-x
https://doi.org/10.1007/s00224-018-9878-x
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib5C4E7670DFCB072CF7AFA12CEA2CFBCFs1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib5C4E7670DFCB072CF7AFA12CEA2CFBCFs1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib5C4E7670DFCB072CF7AFA12CEA2CFBCFs1
https://github.com/ReetBarik/GreediRIS
http://snap.stanford.edu/data
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib75238969DDFC0BA8547B94479BBD899Ds1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bib75238969DDFC0BA8547B94479BBD899Ds1
https://doi.org/10.1109/TKDE.2018.2807843
https://doi.org/10.1109/TKDE.2018.2807843
http://refhub.elsevier.com/S0743-7315(25)00004-8/bibDEEBFAF847E26DC12ABCF036FEB61D6Fs1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bibDEEBFAF847E26DC12ABCF036FEB61D6Fs1
http://refhub.elsevier.com/S0743-7315(25)00004-8/bibDEEBFAF847E26DC12ABCF036FEB61D6Fs1
https://github.com/pnnl/ripples/tree/master

	GreediRIS: Scalable influence maximization using distributed streaming maximum cover
	1 Introduction
	2 Background and preliminaries
	2.1 The IMM algorithm

	3 GreediRIS: a RandGreedi framework for distributed influence maximization
	3.1 The Greedi framework
	3.2 Distributed IMM using RandGreedi
	3.3 Distributed streaming IMM via RandGreedi
	3.3.1 Streaming computation in the global machine
	3.3.2 Communication reduction using truncation at the senders

	3.4 Parallelization and implementation

	4 Experimental evaluation
	4.1 Experimental setup
	4.2 Comparative evaluation
	4.3 Performance evaluation for GreediRIS
	4.4 Extension of GreediRIS to OPIM

	5 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Data availability
	References

