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Ifluence maximization—the problem of identifying a subset of 𝑘 ifluential seeds (vertices) in a network�-

is a classical problem in network science with numerous applications. The problem is NP-hard, but there 
exist efficient polynomial time approximations. However, scaling these algorithms still remain a daunting task 
due to the complexities associated with steps involving stochastic sampling and large-scale aggregations. In 
this paper, we present a new parallel distributed approximation algorithm for ifluence maximization with 
provable approximation guarantees. Our approach, which we call GreediRIS, leverages the RandGreedi

framework—a state-of-the-art approach for distributed submodular optimization—for solving a step that 
computes a maximum 𝑘 cover. GreediRIS combines distributed and streaming models of computations, along 
with pruning techniques, to effectively address the communication bottlenecks of the algorithm. Experimental 
results on up to 512 nodes (32K cores) of the NERSC Perlmutter supercomputer show that GreediRIS can 
achieve good strong scaling performance, preserve quality, and significantly outperform the other state-of-the

art distributed implementations. For instance, on 512 nodes, the most performant variant of GreediRIS achieves 
geometric mean speedups of 28.99× and 36.35× for two different diffusion models, over a state-of-the-art parallel 
implementation. We also present a communication-optimized version of GreediRIS that further improves the 
speedups by two orders of magnitude.

1. Introduction

Given a large real-world graph (e.g., online social network), a fixed 
budget 𝑘 > 0, and a stochastic diffusion model 𝑀 , the ifluence max

imization (henceforth, InfMax) problem aims to identify 𝑘 nodes (or 
“seeds'') that when initially activated, are expected to maximize in

fluence spread on the network under the model 𝑀 . This ``word of 
mouth'' approach to spreading ifluence has made InfMax rich in 
applications—e.g., for online viral marketing [1], network monitor

ing [2], controlling rumors in social networks [3], recommendation 
systems [4], and in understanding how contagions spread in a popu

lation [5,6].

InfMax is NP-hard under classical diffusion models [5] such as In

dependent Cascade (IC) and Linear Threshold (LT). The seminal work by 
Kempe et al. [5] showed that the expected ifluence spread function is 
monotone submodular�-which means the marginal gain of adding a new 
seed to the current solution set decreases as the set becomes larger. Us
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ing classical submodularity results [7], Kempe et al. provided a greedy 
(1 − 1∕𝑒)-approximation algorithm, which incrementally expands the 
seed set by selecting the next seed with the highest marginal gain in 
ifluence. Although the connection to submodularity provides efficient 
algorithms, approximating InfMax still requires Monte Carlo simula

tions to generate samples that approximate the spread from the current 
seed set [5].

An alternative class of approaches, such as the IMM [8] and OPIM [9] 
algorithms, uses the notion of reverse ifluence sampling [10] to obtain 
(1−1∕𝑒−𝜀)-approximation, where 𝜀∈ [0,1] is a controllable parameter 
that models the sampling error. These approaches [11,8,9] use random 
sampling of the graph to ``score'' vertices based on how other vertices 
can reach them and use that information to identify seeds. These algo

rithms and related implementations have sufficiently demonstrated that 
the RIS-based approach is significantly faster in practice compared to the 
greedy hill climbing approach [5]�-making the RIS-based approach the 
de facto choice to implement InfMax.
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The RIS based approaches consist of multiple rounds, each with two 
major phases: a) Sampling, and b) Seed selection. The sampling phase 
generates subgraph samples based on the diffusion model, and the seed 
selection phase solves a maximum 𝑘-coverage problem on the generated 
samples—i.e., identifying 𝑘 vertex seeds that provide maximum cov

erage over the samples. Minutoli et al. [12,13] developed Ripples, the 
first parallel implementation for RIS-based IMM [8]. Subsequently, Tang 
et al. [14] developed DiIMM, which uses a similar distributed strategy to 
parallelize IMM. Both these approaches retain the approximation guar

antees of their sequential predecessors. However, in both these methods, 
while the sampling step is easier to scale, the seed selection step is more 
challenging as it involves performing 𝑘 global reductions—as observed 
later in the results.

Contributions: In this paper, we target the seed selection step to im

prove the scaling of RIS-based approaches. In particular, we propose a 
distributed streaming maximum-𝑘-cover (abbreviated max-k-cover) 
to accelerate seed selection, using the distributed Greedi [15,16] frame

work under a parallel setting. In this framework, a set of local machines 
computes partial greedy solutions of the local dataset which they trans

mit to a global machine, and the global machine applies an aggregation 
algorithm on the partial solutions received.

Distributed Greedi avoids expensive reductions. However, we ob

serve that employing the vanilla Greedi to InfMax, the global aggre

gation leads to a compute and communication bottleneck as the number 
of machines increases. To address this issue, we have designed two 
techniques: a) aggregation in the global machine asynchronously by 
adapting a recent streaming algorithm, and b) truncating elements in the 
local partial solutions to aggressively cut down on computing and com

munication for the global machine. Using the streaming algorithm in the 
global aggregation allows us to carry out the local and global seed se

lections in tandem, effectively masking the communication overheads. 
Both of these approaches come with theoretical approximation guaran

tees. In summary, the main contributions are:

• We present GreediRIS, a new distributed streaming algorithm for 
RIS-based InfMax on distributed parallel platforms (§3).

• We present and implement GreediRIS-trunc, a truncation tech

nique, to provide a knob to control communication overhead with 
a tradeoff in quality (§3.3.2).

• All our algorithms have provable worst-case approximation guar

antees (§3.3.2).

• Experimental evaluation on up to 512 compute nodes (32K cores) of 
a supercomputer demonstrates that GreediRIS significantly out

performs the state-of-the-art distributed methods [12,14] (reported 
speedups with geometric mean of 28.99× and 36.35× for two pop

ular diffusion models), while preserving output quality (geometric 
mean of reported quality change from state-of-the-art baseline is 
2.72%).

Our work—the first of its kind to incorporate distributed parallel 
submodular optimization for InfMax�-is also generic enough to be ex

tended to a broader base of application settings that use submodular 
optimization. While such adaptations need significant efforts in imple

mentations, this paper represents a concrete demonstration for InfMax.

2. Background and preliminaries

In this section, we review the necessary background for the InfMax

problem, including submodular optimization, max-k-cover, and the 
IMM algorithm which forms the sequential template for our method. 
Table 1 lists the key notations used in the paper.

Let 𝐺 = (𝑉 ,𝐸) be a graph, where 𝑉 and 𝐸 are the sets of vertices 
and edges, respectively, and 𝑛 = |𝑉 |. The process of ifluence spread on 
𝐺 can be described as follows. Let 𝑆 ⊆ 𝑉 denote a seed set of vertices 
which are already activated. Then, the expected ifluence of 𝑆 (denoted 

Table 1
Notation.

Symbol Description 
𝐺 = (𝑉 ,𝐸) Input graph with 𝑛 vertices in 𝑉
𝑆 Seed set, 𝑆 ⊆ 𝑉

𝑘 Target number of output seed vertices 
𝑀 Diffusion process for influence spread over 𝐺
𝜎(𝐴) Expected influence of 𝐴⊆ 𝑉 under 𝑀
𝑂𝑃𝑇 Max influence spread of any set of 𝑘 vertices 
𝑁𝑎(𝑢) Subset of activated neighbors of vertex 𝑢

𝑅𝑅𝑅(𝑢) Random Reverse Reachable (RRR) set for 𝑢
𝜃 Target number of RRR sets (i.e., samples) 
R Set containing 𝜃 RRR samples 
(𝑖) Subset of vertices in 𝑉 present in RRR set 𝑖
(𝑣) Covering subset for 𝑣: (𝑣) = {𝑖|𝑣 ∈(𝑖)}
𝑚 Number of machines (or processes) 

by 𝜎(𝑆)) is the expected number of vertices that will be activated by 𝑆
through a stochastic diffusion process, dfined by a model 𝑀 . Note that 
0 < 𝜎(𝑆) ≤ 𝑛.

Definition 2.1 (InfMax). Given a graph 𝐺 = (𝑉 ,𝐸), a diffusion process 
𝑀 , and an integer 𝑘, the Ifluence Maximization problem finds a seed 
set 𝑆 ⊆ 𝑉 , where |𝑆| ≤ 𝑘 maximizing 𝜎(𝑆) under 𝑀 .

Kempe et al. [5] showed that InfMax is NP-hard under two practical 
diffusion models, namely, Independent Cascade (IC) and Linear Thresh

old (LT). In the IC model, at each diffusion step, every edge ⟨𝑢, 𝑣⟩ has a 
fixed probability 𝑝𝑢(𝑣) for an active vertex 𝑢 to activate a neighbor 𝑣. The 
process stops when no further activation is possible. The LT model de

scribes group behavior where individuals (i.e., 𝑣 ∈ 𝑉 ) have some inertia 
(modeled by a scalar 𝜏𝑣) in adopting mass behavior. The strength of the 
relationship between two vertices 𝑢, 𝑣 ∈ 𝑉 is captured by a probabilistic 
edge weight 𝑤(𝑢,𝑣), and the sum of the incoming weights on any vertex is 
assumed to be 1. A vertex 𝑣 becomes active in LT if 

∑
𝑢∈𝑁𝑎(𝑣)𝑤𝑢,𝑣 ≥ 𝜏𝑣, 

where 𝑁𝑎(𝑣) is the subset of active neighbors of 𝑣.

Kempe et al. [5] also proved that the expected ifluence 𝜎(𝑆) is 
a non-negative monotone submodular function. Submodular functions 
model diminishing returns of utilities. More formally:

Definition 2.2 (Submodular function). Let 𝑋 be a finite set, the function 
𝑓 ∶ 2𝑋 →ℝ is submodular if and only if:

𝑓 (𝐴 ∪ {𝑥}) − 𝑓 (𝐴) ≥ 𝑓 (𝐵 ∪ {𝑥}) − 𝑓 (𝐵), (1)

where 𝐴⊆𝐵 ⊆𝑋 and 𝑥 ∈𝑋 ⧵𝐵.

For InfMax, where 𝑋 = 𝑉 , the left term represents the marginal gain

in ifluence for adding a new vertex 𝑥 to an existing seed set 𝐴 ⊆ 𝑉 . By 
the submodularity property, the net gain of adding a new vertex into the 
current seed set could only diminish as the seed set expands—suggesting 
a greedy approach toward seed set expansion. This seminal result led to 
the first greedy approximation algorithm for InfMax [5]�-using greedy 
hill climbing [7]. Estimating the actual ifluence spread is also shown 
to be #P-hard under both the IC and LT models [17,18]. The exist

ing algorithms for InfMax thus employ randomized sampling to esti

mate expected ifluence and introduce an additive sampling error in 
the approximation factor. The early efforts focused on simulation-based 
approaches such as Monte-Carlo simulation [5]. Subsequently, another 
class of approximation algorithms (albeit faster) was developed by ex

ploiting Reverse Ifluence Sampling (RIS) that uses the notion of reverse 
reachability [10]. More specifically, this strategy is based on the con

struction of random reverse reachable set for vertices.

Definition 2.3 (Random Reverse Reachable (RRR) set). Let 𝑔 be a random 
subgraph of 𝐺, obtained by removing edges randomly as dictated by 
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their respective edge probabilities. The random reverse reachable set for 
vertex 𝑢 ∈ 𝑉 in 𝑔 is given by: 𝑅𝑅𝑅𝑔(𝑢) = {𝑣|∃ a path from 𝑣 to 𝑢 in 𝑔.}

We refer to each 𝑅𝑅𝑅𝑔(𝑢) as a sample generated for 𝑢. Note that each 
such sample is a subset of 𝑉 . An alternative interpretation of 𝑅𝑅𝑅𝑔(𝑢)
is—if a vertex 𝑣 appears in 𝑅𝑅𝑅𝑔(𝑢), then 𝑣 is a likely ifluencer of 𝑢. 
Consequently, higher the frequency of the vertex 𝑣 appearing in such 
random reverse reachable sets, the larger is its expected ifluence in the 
input network.

2.1. The IMM algorithm

Tang et al. [8] proposed the IMM algorithm to implement the RIS 
approach [10,11]. The algorithm is summarized in Algorithm 1. The 
main intuition is to generate 𝜃 number of RRR samples, and then select 
a set of 𝑘 vertices as the solution seed set such that they provide maxi

mum coverage over the set of samples. It uses Martingale analysis and 
bootstrap techniques to estimate a lower bound of the sampling effort 
required to achieve OPT (the utility of the intractable optimal solution). 
Initially, using the analytical formula prescribed in [8], the algorithm 
estimates the number of RRR samples to compute, denoted by 𝜃̂, using 
the values of |𝑉 |, 𝜀 and 𝑘 (Estimate(.) in line 3). Next, the sampling 
procedure Sample(.) generates and populates those 𝜃̂ RRR samples in 
R (line 7). To generate such a sample:

1. a vertex 𝑢 ∈ 𝑉 is chosen uniformly at random to be the source ver

tex.

2. given a source, a probabilistic BFS (edges are selected for traversal 
based on their assigned weights) on the reverse graph (destinations 
are vertices with incoming edges to the source) is used to populate 
the RRR sample.

The generated samples are then used to compute 𝑘 seeds by the seed se

lection step SelectSeeds(.) as shown in the line 8. This is an instance 
of computing a max-k-cover on the universe of samples. Using this 
intermediate seed set, (provably an unbiased estimator of the unknown 
optimum (OPT)) a lower bound (LB) on OPT is computed, and compared 
against a certain fraction of |𝑉 | (denoted by function CheckGoodness
in Algorithm 1; details in [8]). If the condition isn’t met, 𝜃̂ is doubled 
and the process is repeated. The IMM algorithm conducts at most log |𝑉 |
such rounds, which we will term as ``martingale'' rounds (lines 4--11) till 
the condition is met. Once a tight lower bound is computed, the final 
sample size (𝜃) is calculated using the LB, and the martingale loop is ter

minated. Finally, 𝜃 RRR samples are generated, and the set of 𝑘 seeds 
are selected using those samples (lines 12--13).

The IMM algorithm is shown to be (1 − 1∕𝑒 − 𝜀)-approximate for 
InfMax. Here, 𝜀 is the precision parameter dictating the sampling error. 
We restate a result from [8] here.

Theorem 2.1. Given 𝜃 = 𝜆∗∕𝑂𝑃𝑇 and 𝛿 ∈ (0,1), the Algorithm 1 returns 
an (1 − 1∕𝑒 − 𝜀)-approximate solution of InfMax with probability at least 
1 − 𝛿.

Here 𝑂𝑃𝑇 is the optimal expected ifluence. The 𝜆∗ is a function of 
𝑛, 𝜀, 𝑘, 𝛿. We refer to [8,19] for the actual value of the function 𝜆∗ . The 
(1 − 1∕𝑒) term in Theorem 2.1 is due to the standard greedy algorithm 
for the seed selection that computes a max-k-cover on the universe 
of 𝜃 samples. In fact, we can replace the greedy algorithm with any 
𝛼-approximate algorithm, where 𝛼 ≤ (1 − 1∕𝑒).

Corollary 2.1. Given 𝜃 = 𝜆∗∕𝑂𝑃𝑇 , 𝛿 ∈ (0,1) and 𝛼-approximate max
k-cover, the IMM algorithm returns an (𝛼 − 𝜀)-approximate solution of 
InfMax with probability at least 1 − 𝛿.

The justfication of the Corollary 2.1 is as follows. Since the sam

pling effort, 𝜃 = 𝜆∗∕𝑂𝑃𝑇 is estimated to guarantee an (1 − 1∕𝑒)

Algorithm 1 IMM(𝐺,𝑘, 𝜀) by [8].

Input: 𝐺(𝑉 ,𝐸): graph; 𝑘: # of seeds; 𝜀∈ [0,1]: sampling error.

Output: 𝑆 : the seed set

1: {1. Estimate 𝜃 using martingale rounds}

2: R← ∅
3: 𝜃̂← Estimate(𝑘, 𝜀, |𝑉 |)
4: for 𝑥∈ [1, log |𝑉 |] do

5: if 𝑥 > 1 then

6: 𝜃̂← 2 × 𝜃̂

7: R← Sample(𝐺, 𝜃̂ − |R|,R)
8: 𝑆 ← SelectSeeds(𝐺,𝑘,R)
9: if CheckGoodness(𝑆,𝑉 ,&𝐿𝐵) then

10: 𝜃← 𝑓 (𝑘, 𝜀, |𝑉 |,𝐿𝐵)
11: break {lower bound condition is met}

12: R← Sample(𝐺,𝜃) {2. Generate 𝜃 RRR samples}

13: 𝑆 ← SelectSeeds(𝐺,𝑘,R) {3. Select final seeds}

14: return S

approximation for the max-k-cover, for any 𝛼 ≤ (1 − 1∕𝑒), the sam

pling effort is trivially sufficient.

The Sample(.) function is usually implemented as a probabilistic 
BFS originating from 𝜃̂ randomly selected roots from 𝑉 in any martin

gale round. All vertices visited in a probabilistic BFS become the RRR 
set for that sample. The SelectSeeds(.) procedure is greedy, and in

volves iteratively computing 𝑘 vertices with a maximum coverage on 
the set of RRR samples as detailed in §3.2.

Among distributed parallel approaches for InfMax, the state-of-the

art comprises of PREEMPT [20] and IMpart [21] for greedy hill climb

ing, and Ripples [12,13] and DiIMM [14] for parallel distributed IMM. 
As we focus on RIS-based approaches, we will review Ripples and Di

IMM.

Prior work in parallel distributed IMM: Both Ripples and DiIMM 
approaches start by loading the entire graph on each machine, and ef

ficiently distributing the generation of all (𝜃 or 𝜃̂) samples across 𝑚
machines, i.e., 𝑂( 𝜃

𝑚
) samples per machine. However, seed selection 

involves significant data exchange to compute the updated marginal 
coverage for each vertex, making the step communication-intensive. In 
particular, since sampling is distributed, each machine can keep track 
of only the local sample coverage for each of the 𝑛 vertices. Thus, to 
get the global coverage values, a global reduction is required each time 
a new seed is selected. The Ripples algorithm implements this using 𝑘
global reductions (over an 𝑛-sized frequency vector). The updated global 
frequencies are used to pick the next best seed. In contrast, DiIMM com

putes these updates in a lazy fashion under a master-worker setting. 
Here, after performing a global reduction to select the first seed, the 
master processes the remaining vertices in a non-increasing order of 
their original coverage. If the next vertex selected is detected to have an 
outdated coverage, it is pushed back into the queue and the algorithm 
continues. Once it finds the next seed (one with the correct next best 
marginal coverage), it broadcast the information to all the machines so 
that they can update vertex coverages using their local sample sets. The 
master machine accumulates the changes via a global reduction for the 
next iteration of seed selection.

We can show that the DiIMM approach is algorithmically equivalent 
of performing 𝑘 global reductions. While Ripples does this entirely in 
a distributed fashion, DiIMM computes this using a master-worker set

ting. In either case, seed selection dominates communication costs, as 
it entails a reduction of an 𝑂(𝑛)-sized vector within each of the 𝑘 itera

tions.

In our work, the distributed sampling step is similar to Ripples and 
DiIMM—as it is a step that is easily amenable for distributed parallelism. 
The major difference, however, stems in the way we perform seed se

lection. More specifically, we reformulate the seed selection step using 
the RandGreedi framework [16] so as to bring the state-of-the-art for 
distributed submodular optimization to parallelize ifluence maximiza

tion. The key advantages are: a) the 𝑘-steps of communication can be 
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reduced to just two steps (as will be explained next in §3.2); and b) 
streaming also can be used (along with a truncation scheme) to mask 
out communication overheads further (as will be explained in §3.3).

3. GreediRIS: a RandGreedi framework for distributed 
ifluence maximization

We exploit the submodular nature of the max-k-cover compu

tation step in order to accelerate seed selection for InfMax. The 
state-of-the-art distributed submodular maximization algorithm is the 
RandGreedi [16] framework. Adapting this framework, we present a 
new distributed memory parallel algorithm for ifluence maximization 
and refer to our approach GreediRIS.

We first provide a brief overview on Greedi and RandGreedi

(§3.1). Then we show how computing max-k-cover allows adapting 
RandGreedi for any RIS-based InfMax algorithms (§3.2). We then dis

cuss the limitations of this simple adaptation and propose a distributed 
streaming algorithm (§3.3) and a communication-reducing truncation 
technique (§3.3.2) to alleviate these limitations. Section 3.4 describes 
our overall parallel algorithm.

3.1. The Greedi framework

The Greedi framework represents approaches [16,22,23] for dis

tributed submodular function optimization under budget constraints. 
These approaches initially partition the data set into different ma

chines. Each machine, independently in parallel, executes the standard 
greedy algorithm [7] to compute its local solutions. These local solu

tions are then communicated to a global aggregation node, where they 
are merged. The greedy algorithm is then employed in the global ma

chine on this set of merged local solutions. The final solution is the 
one that maximizes the function value from the set of local solutions 
and the global solution. This two-stage algorithm is shown to be more 
efficient [16] than earlier distributed algorithms. Although Greedi per

forms well in practice, its approximation ratio depends inversely on the 
number of machines. RandGreedi [16] was proposed to improve the 
approximation guarantee of Greedi. Through a probabilistic analysis, 
the authors showed that by partitioning the data uniformly at random, 
Greedi could achieve a constant approximation guarantee. We restate 
the following theorem from [16] that proves the approximation ratio of 
RandGreedi.

Theorem 3.1. Let the greedy method on the local machines be an 𝛼

approximate, and that the global algorithm be a 𝛽-approximate for maxi

mizing a monotone submodular function subject to a cardinality constraint. 
Then, RandGreedi is (in expectation) 𝛼𝛽

𝛼+𝛽 -approximate for the same prob

lem.

While the local machines in RandGreedi need to execute the greedy 
algorithm locally, the global algorithm can use any approach.

3.2. Distributed IMM using RandGreedi

We first extend IMM into the RandGreedi framework. The focus on 
IMM is for expository reasons, as it a prototypical RIS approach. Our 
distributed approach also works for OPIM [9].

Recall from Table 1 that R denotes the collection of sampled 𝜃 RRR 
sets, and (𝑖) ⊆ 𝑉 denote the 𝑖th RRR set in this collection. Given R, 𝑉 , 
and the target number 𝑘, the seed selection problem can be formulated 
as a max-k-cover computation as follows. The set R represents the uni

verse to be covered. From R, we generate a collection of covering subsets, 
 . For each node 𝑣 ∈ 𝑉 , let (𝑣) be the subset of RRR sets (identfied 
by their respective indices in [0, 𝜃−1]) in which 𝑣 appears—i.e., (𝑣) =
{𝑖 ∈ [0, 𝜃−1]|𝑣 ∈(𝑖)}. It is now easy to see that the seed selection prob

lem of IMM reduces to finding a max-k-cover, where the universe is 

{0,… , 𝜃 −1} (i.e., R), and the collection of covering subsets is  . More 
formally, the max-k-cover problem here is to find a subset 𝑆 ⊆ 𝑉 that 
is given by: arg max𝑆⊆𝑉 𝐶(𝑆) = ||

⋃
𝑖∈𝑆 (𝑖)|| , subject to |𝑆| ≤ 𝑘.

The function 𝐶(𝑆) can easily be shown to be non-negative monotone 
submodular. A greedy algorithm that repeatedly selects a covering sub

set from  with the largest marginal gain with respect to the current so

lution, achieves (1−1∕𝑒) worst-case approximation guarantee [7] which 
is the best achievable unless P=NP [24]. In practice, faster variants of 
greedy exist, such as lazy greedy [25], threshold greedy [26,27], and 
stochastic greedy [15]. Lazy greedy [25], which exploits the monotone 
decrease in the marginal gain of a submodular function, is widely used 
and often performs much faster than the standard greedy in practice 
[27] while obtaining the same approximation guarantee. The submodu

larity property ensures that the marginal gain of an element with respect 
to the current solution can only decrease. Lazy greedy uses this observa

tion and maintains a max heap of upper bounds on the marginal gains of 
each element. These upper bounds, updated lazily, are used to select the 
next element, potentially avoiding computations of marginal gains for a 
large fraction of the elements. Our implementation supports both stan

dard and lazy greedy approaches. Algorithm 2 shows our lazy greedy

max-k-cover.

Algorithm 2 Lazy-greedy-max-k-cover(𝜃̂, , 𝑘).

Input: 𝜃̂: size of the universe,  : 𝑛 covering subsets, 𝑘: an integer

Output: 𝑆 : A subset of [0,… , 𝑛− 1] of size at most 𝑘
1: Build a max heap 𝑄 using all 𝑛 covering subsets  , and using the cardinality 

of each subset as the key

2: 𝑆 = ∅
3: while (|𝑆| < 𝑘) or Q is empty do

4: 𝑣 = Q.pop()

5: marginal_gain = 𝐶(𝑆 ∪ {𝑣}) −𝐶(𝑆)
6: if marginal_gain ≥ Q.top().key then

7: 𝑆 = 𝑆 ∪ {𝑣}
8: else

9: Q.push(⟨𝑣, marginal_gain⟩)
10: return 𝑆

Next, we describe our distributed parallel version of Algorithm 1
using the RandGreedi framework. Let 𝑚 to denote the number of ma

chines (or processes or ranks, used interchangeably), and 𝑝 ∈ [0,𝑚− 1]
denote an arbitrary machine. Given 𝐺(𝑉 ,𝐸), 𝑘, and 𝑚, our distributed 
IMM algorithm conducts multiple martingale rounds just as the sequen

tial version (Algorithm 1). Algorithm 3 shows the RandGreedi version 
of our distributed IMM for each round.

During the sampling phase (lines 1--4 of Algorithm 3), each machine 
independently generates 𝜃̂∕𝑚 samples from 𝐺. This is achieved by se

lecting vertices in 𝑉 uniformly at random and generating 𝑅𝑅𝑅(𝑣) for 
each of them. We use the Leap Frog method described in [12] to ensure 
consistent parallel pseudorandom generation across different values of 
𝑚. At rank 𝑝, the parallel sampling phase produces R𝑝. Since 𝜃̂ doubles 
with each martingale round, in our implementation we retain the pre

vious batch of samples and simply add the second half (i.e., augment 
the previous round’s set of 𝜃̂∕𝑚2 samples with a new set of 𝜃̂∕𝑚2 samples). 

The samples in R𝑝 are numbered from [𝑝 ⋅ 𝜃̂

𝑚
, (𝑝 + 1) ⋅ 𝜃̂

𝑚
− 1], so that 

each rank can claim a disjoint interval. Next, we generate a partition

ing of the set of vertex ids [0, 𝑛 − 1] uniformly at random across the 𝑚
machines so that each rank 𝑝 is assigned a distinct subset of ≈ 𝑛∕𝑚 ids 
(line 5 of Algorithm 3). Let 𝑉𝑝 ⊆ [0, 𝑛−1] denote this subset assigned to 
rank 𝑝. Note that as this is a uniform random partitioning, and therefore 
each vertex is assigned only to one rank. 

Next, we perform a shuffle communication such that the ids of all the 
RRR sets that contain a particular vertex 𝑢 are gathered at the rank that 
is responsible for 𝑢. This is implemented using an MPI all-to-allv

communication primitive (line 6 of Algorithm 3). Specifically, we first 
construct a set of partial covering subsets 𝑝(𝑢) at each rank 𝑝 using the 
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Algorithm 3 RandGreedi-RIS-Round(𝐺,𝑘, 𝜃̂,𝑚).

Input: 𝐺(𝑉 ,𝐸): input graph, 𝑘: an integer, 𝜃̂: number of samples for the current 
round, 𝑚: number of machines

Output: 𝑆 : the seed set

1: for each machine 𝑝∈ [𝑚] in parallel do

2: R𝑝 ← Generate 𝜃̂∕𝑚 random samples

3: for each vertex 𝑣 ∈ 𝑉 do

4: 𝑝(𝑣) = {𝑗|𝑣 ∈𝑝(𝑗)}
5: Partition 𝑉 uniformly at random into 𝑚 vertex sets (𝑉𝑝 at 𝑝)

6: All-to-all: (𝑢) =⋃
𝑝∈[𝑚]{𝑝(𝑢)|𝑢 ∈ 𝑉𝑝} at 𝑝

7: 𝑆 ← RandGreedi-max-k-cover(𝜃̂, , 𝑘,{𝑉𝑝})

8: return 𝑆

Fig. 1. Sampling visualized as a sparse matrix. The sampling phase populates 
the columns, and the shuffle phase distributes by rows.

RRR sets of R𝑝 (line 4 of Algorithm 3). These partial covering subsets 
are then scattered so that the lists corresponding to all vertices 𝑢 ∈ 𝑉𝑝
are gathered at rank 𝑝 as follows: (𝑢) =

⋃
𝑝∈[𝑚]{𝑝(𝑢)|𝑢 ∈ 𝑉𝑝} at 𝑝. At 

the end of this step, rank 𝑝 contains the complete covering subset (𝑢)
for each 𝑢 ∈ 𝑉𝑝. Fig. 1 illustrates this shuffle operation.

We are now ready to apply the RandGreedi framework to com

pute seeds. Algorithm 4 shows the function to compute the seed set 
using max-k-cover. As explained in §3.1, the RandGreedi frame

work involves two steps: computing local max-k-cover in a distributed 
fashion, and then merging those local solutions into a global (single) 
machine to compute a global max-k-cover. Subsequently, the global 
solution (𝑆𝑔) is compared with the best of the local solutions (𝑆𝓁 ), and 
the best of the two is output as the final solution (𝑆) for that martin

gale round. This is followed by a broadcast call to make the utility of 
the selected seed set available at all machines.

Algorithm 4 RandGreedi-max-k-cover(𝜃, , 𝑘,{𝑉𝑝}).
Input: 𝜃: size of the universe,  : 𝑛 covering subsets, 𝑘: an integer, {𝑉𝑝}: uniform 

random set of partitions of 𝑉
Output: 𝑆 : A subset of 𝑉 ∶ [0,… , 𝑛− 1] of size at most 𝑘
1: for each process 𝑝∈ [𝑚] in parallel do

2: 𝑆𝑝 ← Lazy-greedy-max-k-cover(𝜃,𝑝, 𝑘) //local max-k-cover

3: Gather:  ′ =
⋃

𝑝 (𝑆𝑝)
4: 𝑆𝑔 ← Lazy-greedy-max-k-cover(𝜃, ′, 𝑘) //global max-k-cover

5: 𝑆𝓁 = arg max𝑝∈[𝑚]{𝐶(𝑆𝑝)} //local best

6: 𝑆 = arg max{𝐶(𝑆𝑔), 𝐶(𝑆𝓁)}
7: return 𝑆

Limitations: A straightforward implementation of Algorithms 3 and 4
could lead to the global aggregation step becoming a bottleneck, as it 
has to wait until all the local machines complete their local max-k
cover computations. With increasing 𝑚, this issue is exacerbated by the 
global aggregation step receiving up to 𝑚 ⋅ 𝑘 local solutions. To test this 
hypothesis, we implemented and tested this template version. Table 2
shows the running times for the local and global max-k-cover steps 
as a function of 𝑚. The results show that as 𝑚 is increased, the time to 
generate the local solutions decreases while the time to aggregate and 
produce the global solution increases. Also, the global aggregation step 
chooses the final 𝑘 seeds from a significantly richer set of candidates, 

Table 2
The runtimes in seconds for computing the local and global 
solutions of max-k-cover using the RandGreedi template. 
Livejournal (|𝑉 | = 4.8𝑀, |𝐸| = 68.9𝑀) was used as the test 
input.

𝑚: Number of machines 
Time (in sec) 8 16 32 64 128 
local max-k-cover 1.87 0.91 0.34 0.17 0.10 
global max-k-cover 0.22 0.67 1.20 2.47 4.86 

thereby increasing the amount of computations required to calculate 
the marginal gains to select each seed. This motivates the design of a 
streaming based implementation presented next in §3.3.

3.3. Distributed streaming IMM via RandGreedi

To overcome the above limitations of RandGreedi, we present two 
improvements. The first approach (§3.3.1) replaces the global aggrega

tion algorithm with a streaming max-k-cover technique inside each 
round. The second approach (§3.3.2) reduces communication cost from 
the local max-k-cover solvers through a truncation technique.

3.3.1. Streaming computation in the global machine

The first approach to improve RandGreedi replaces the global ag

gregation algorithm with a streaming max-k-cover. The key idea is 
to immediately send the local seeds to the global machine, as they are 
generated, without waiting for the local machines to complete all their 
greedy selections. The global machine then runs a linear time one-pass 
streaming algorithm on the incoming data, thus offsetting the compu

tational expense, and allowing masking of communication overhead. 
Streaming can therefore allow tandem executions of global and local 
solvers.

Implementing streaming necessitates that the global max-k-cover

algorithm be changed to work with the incoming stream of local seeds 
(from different machines). The standard greedy max-k-cover algo

rithm (Algorithm 2) being offline, is not suitable here. However, with the 
RandGreedi framework, we are free to choose any algorithm for aggre

gation. As the max-k-cover problem is an instance of the submodular 
maximization with cardinality constraints, we can use one of the recent 
direct streaming algorithms designed for max-k-cover [28,29]. In this 
work, we employ the (1∕2 − 𝛿)-approximate streaming algorithm (de

scribed next) also developed in [28] because it’s nearly linear in runtime, 
and absence of any post-processing steps, thus generating the solution 
immediately after the streaming phase ends. The challenge here is also 
to show that the streaming algorithm provides good quality solution ef

ficiently.

Algorithm 5 Streaming max-k-cover at the global receiver.

Input: 𝑚: streaming collection of subsets from local senders, 𝑘: an integer, 𝑢: 
upper bound on OPT, 𝑙: lower bound on OPT, 𝛿

Output: set of seeds of size at most 𝑘
1: Create 𝐵 = log1+𝛿⌊ 𝑢

𝑙
⌋ buckets

2: 𝐶𝑏 ← covering sets of a bucket 𝑏, initialized to empty

3: 𝑆𝑏 ← set of seed nodes at bucket 𝑏, initialized to empty

4: for 𝑠 ∈ 𝑚 do

5: for all 𝑏 ∈ [0,𝐵 − 1] in parallel do

6: if |𝑆𝑏| < 𝑘 and |𝑠 ⧵𝐶𝑏| ≥ (1+𝛿)𝑏

2𝑘 then

7: 𝐶𝑏 = 𝐶𝑏 ∪ {𝑠}
8: 𝑆𝑏 = 𝑆𝑏 ∪ 𝑖𝑑(𝑠)
9: 𝑏∗ = 𝑎𝑟𝑔max𝑏 |𝐶𝑏|

10: return 𝑆𝑏∗

Let 𝑢 and 𝑙 be an upper and lower bound on optimum coverage, re

spectively. For a given 0 < 𝛿 < 1∕2, we maintain 𝐵 = log1+𝛿⌊ 𝑢

𝑙
⌋ buckets 
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indexed by the integers [0,𝐵 − 1]. Each bucket 𝑏 has a lower value cor

responding to the lower threshold limit representing the bucket, which 
is (1 + 𝛿)𝑏. When a streamed-in seed along with its covering subset 𝑠
arrives, the algorithm computes the marginal gain of 𝑠 with respect to 
current solution of 𝑏, 𝑆𝑏. If the bucket 𝑏 holds a solution set of size 
smaller than 𝑘 and the marginal gain is greater than (1 + 𝛿)𝑏, the vertex 
representing the subset 𝑠 (denoted by id(s)) is inserted into the current 
solution, and the cover set (𝐶𝑏) is updated; otherwise, 𝑠 is discarded. 
This operation is repeated for all the buckets. Since the decision to 
recruit a seed into a bucket is independent across buckets, we use mul

tithreaded parallelism to process the buckets. Once the streaming phase 
ends, we output the solution in the bucket (𝑏∗) with maximum cover

age. Algorithm 5 runs in 𝑂(𝜃𝐵|𝑚|∕𝑡) time (where 𝑡 is the number of 
threads), and is shown to be (1∕2 − 𝛿)-approximate of the optimal cov

erage [28].

Lemma 3.1. The approximation ratio of GreediRIS with streaming ag

gregation is (1−1∕𝑒)(1∕2−𝛿) 
(1−1∕𝑒)+(1∕2−𝛿) − 𝜀 in expectation.

Proof. Since the local machines run a greedy algorithm the approxi

mation guarantee is (1 − 1∕𝑒). The streaming algorithm is (1∕2 − 𝛿)
approximate. The guarantee follows from Theorem 3.1 and Corol

lary 2.1. □

3.3.2. Communication reduction using truncation at the senders

In the RandGreedi framework for IMM, each machine can send up 
to 𝑘 seeds, implying a total of 𝑚 ⋅ 𝑘 seeds arriving at the global ma

chine (be it with or without streaming). Our second improvement to 
RandGreedi aims at reducing the volume of communication by restrict

ing the local senders to send only a subset of the 𝑘 seeds to the global 
machine. We refer to this approach as truncated greedy. Specifically, each 
local machine (sender) still computes all 𝑘 local seeds. However, during 
streaming each sends only the top 𝛼 ⋅𝑘 seeds (along with their local cov

ering sets), where 0 < 𝛼 ≤ 1. We show that the approximation ratio for 
the truncated greedy is (1 − 𝑒−𝛼) compared to the optimal solution of 𝑘
subsets. Thus, the 𝛼 value provides a trade-off between the scalability 
and approximation of the overall InfMax algorithm.

Lemma 3.2. The approximation guarantee of truncated greedy is 1− 𝑒−𝛼 .

Proof. We modify the standard analysis of the greedy algorithm for

max-k-cover [24]. Let 𝑂𝑃𝑇 be the optimal coverage of the 𝑘 ele

ments, and 𝑥𝑖 be the number of new elements covered by the truncated 
greedy algorithm in the 𝑖-th set it selects. We are interested to bound 
the coverage value of the truncated greedy, i.e., 

∑𝛼𝑘

𝑗=1 𝑥𝑗 . Since the opti

mal algorithm uses 𝑘 sets to cover 𝑂𝑃𝑇 elements, at iteration (𝑖+ 1) of 

the algorithm, there must be a set that covers at least 
𝑂𝑃𝑇−

∑𝑖
𝑗=1 𝑥𝑖

𝑘 new 

elements. So, 𝑥𝑖+1 ≥
𝑂𝑃𝑇−

∑𝑖
𝑗=1 𝑥𝑖

𝑘 .

By a standard induction on the iteration, we can show that 
∑𝑖+1

𝑗=1 𝑥𝑗 ≥

𝑂𝑃𝑇 −(1− 1 
𝑘
)𝑖+1𝑂𝑃𝑇 . Plugging in 𝑖+1 = 𝛼𝑘, we get 

∑𝑖+1
𝑗=1 𝑥𝑗 ≥𝑂𝑃𝑇 −

(1 − 1 
𝑘
)𝛼𝑘𝑂𝑃𝑇 ≥ (1 − 𝑒−𝛼)𝑂𝑃𝑇 . □

We prove the following result using a similar technique as 
Lemma 3.1.

Lemma 3.3. The approximation ratio of GreediRIS with truncated greedy 
in local machines and streaming aggregation is (1−𝑒−𝛼 )(1∕2−𝛿) 

(1−𝑒−𝛼 )+(1∕2−𝛿) − 𝜀 in excep

tion. Here, 0 ≤ 𝛼 ≤ 1 is the fraction of 𝑘 local seeds communicated to the 
global machine.

For 𝛼 = 1, the approximation ratio of GreediRIS-trunc is the 
same as GreediRIS. Lowering the value of 𝛼 results in the senders com

municating only the top 𝛼-fraction of their local 𝑘 seeds which results in 

Fig. 2. Schematic illustration of our parallel GreediRIS approach inside one 
round.

a reduction of the approximation ratio from that of GreediRIS. For ex

ample, the drop in approximation ratio compared to GreediRISwhen 
𝛼 is set at 0.75 and 0.5 is 1.86% and 4.95% respectively. The intu

ition behind why GreediRIS-trunc provides high quality solutions 
in practice (as seen later in §4.3) despite the reduced approximation 
guarantee, lies in the submodular property exhibited by the local seeds. 
For 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘, the marginal utility of the 𝑖-th seed will always be 
greater than or equal to that of the 𝑗-th out of the 𝑘 local seeds. This im

plies, stronger the submodular behavior of the underlying function, the 
greater is the benfit from truncation as the early choices are likely to 
provide significant gains. This also means that if a submodular function 
is close to a linear function, truncation might not be that useful.

Extension to other RIS-based InfMax methods: Our GreediRIS ap

proach also extends to OPIM [9], which is another RIS-based approach 
to InfMax. Unlike IMM, OPIM delivers an instance-wise approximation 
guarantee in each computation round and is suitable for online process

ing of InfMax. The instance-specific quality guarantees are achieved 
through partitioning the samples generated in each round (using the 
same Sample(.) subroutine as IMM) into two halves 𝑅1 and 𝑅2. The 
first is used to select an intermediate solution for that round (same mech

anism as the SelectSeeds(.) step in IMM). The utility of this solution 
on 𝑅2 is used as a validation score that is utilized by OPIM’s version 
of the CheckGoodness subroutine to come up with the approximation 
guarantee for that round. Algorithmically, OPIM bears many similarities 
to IMM since it proceeds in rounds consisting of a sampling and seed se

lection phase and, as such, is also a suitable candidate for GreediRIS. 
We include experiments integrating OPIM with GreediRIS (§4.4).

3.4. Parallelization and implementation

Next, we present the parallelization details for the overall

GreediRIS distributed streaming worflow. A schematic illustration 
of our GreediRIS worflow is shown in Fig. 2.

S1) Distributed sampling:

The input graph 𝐺 = (𝑉 ,𝐸) is loaded on all machines. Using 𝐺, all 
machines generate ≈ 𝜃∕𝑚 samples each. This step supports multi

threaded parallelism within each machine.

S2) All to all:

The list of vertex ids [0, 𝑛 − 1] is partitioned uniformly at random 
so that each rank 𝑝 is assigned ≈ 𝑛∕𝑚 ids, represented by 𝑉𝑝. Subse

quently, using an MPI all-to-allv communication, we transport 
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all RRR set ids that contain any given vertex 𝑣 ∈ 𝑉𝑝 to rank 𝑝. At the 
end of this step, each machine stores the RRR set ids correspond

ing to all vertex ids in its assigned partition (𝑉𝑝). Recall the use of 
(𝑢) for this covering set for each vertex id 𝑢 ∈ 𝑉𝑝. Henceforth, we 
distinguish between a ``sender'' process and a ``receiver'' process. 
In our streaming implementation, there are 𝑚 − 1 senders (ranks 
[1,𝑚− 1]) and one receiver process (rank 0).

S3) Sender process:

A sender 𝑝 uses the collection of its ≈ 𝑛∕𝑚 covering sets to detect 
up to 𝑘 local seeds. Let [𝑥𝑝0, 𝑥

𝑝

1,…𝑥
𝑝

𝑘−1] denote these seeds. We use 
the lazy greedy max-k-cover algorithm (Algorithm 2) that inter

nally maintains a max heap to identify the next best seed, starting 
with 𝑥𝑝0. To support streaming, the sender process sends each seed 
𝑥
𝑝

𝑖
along with its covering subset to the receiver process as and 

when it is identfied. This is implemented using a nonblocking send 
to minimize waiting at the sender process. The sender concludes 
when all of its 𝑘 seeds are generated. Upon completion, it alerts the 
receiver of its termination.

For the truncated version (§3.3.2), when the truncated limit is 
reached no more sends happen from that sender. But the sender 
continues to generate all its 𝑘 seeds locally. The idea is to enable 
comparison at the end with the global solution.

S4) Receiver process:

After participating in the initial sampling, the role of the receiver 
switches to: a) aggregating all the seeds sent by all senders; and 
b) performing the global max-k-cover using the multi-threaded 
streaming algorithm in Algorithm 5. Let 𝑡 denote the number of 
threads at the receiver. Thread rank 0 is a dedicated communicating 
thread to listen to the senders using a nonblocking receive. The re

maining (𝑡− 1) threads parallelize the insertion of seeds into the 𝐵
buckets. We refer to these as bucketing threads. We assign ⌈𝐵∕(𝑡−1)⌉
threads per bucket. When a new seed 𝑥 (along with its covering set 
(𝑥)) is received, the communicating thread places ⟨𝑥,(𝑥)⟩ on a 
queue and atomically sets a flag corresponding to that index. For 
this purpose, the receiver maintains a shared array 𝐴 of maximum 
size 𝑚 ⋅ 𝑘. Each bucketing thread monitors the flag corresponding 
to the next index yet to be read. When the flag is set, that means 
there is a new element 𝑥 in that index, then all bucketing threads 
read 𝑥 and insert them into their respective buckets independently. 
This allows for a lock-free (atomic) update. This also allows concur

rent processing of the bucketing threads with the communicating 
thread. Finally, when all senders have alerted the receiver with ter

mination, the receiver compares the best solution across the buckets 
with the best local solutions at the senders, and outputs the final 
seed set.

Runtime complexity: As for the runtime complexity, step S1 (sampling) 
takes (𝜃∕𝑚) ⋅ 𝓁𝑠, where 𝓁𝑠 is the average length of a sample. Given the 
same set of edge probabilities, this average is expected to be more for 
the IC model than for LT. Step S2 is an all-to-all communication step and 
can take (𝜏𝑚+𝜇

𝑛 
𝑚
𝜃) in the worst-case, where 𝜏 and 𝜇 are the network 

latency and reciprocal of bandwidth respectively. Note that the size of 
each covering set to be received is upper bounded by 𝜃 and in practice is 
likely to be less (depends on its 𝑛∕𝑚 vertex subset). Also, even though the 
receiver process sends out the samples it generated, it will not receive 
any data (from the all-to-all) as all the local max-k-cover happen at 
the senders. The remaining part of the sender process (S3) is consumed 
in generating local seeds from its local (𝑛∕𝑚) covering subsets. Using 
the greedy algorithm, this takes ( 𝑘𝜃𝑛

𝑚 ).
As for the receiver process (S4), the communication time is domi

nated by the nonblocking receive to collect all the streamed seeds, and 
the computation time by the time to insert into the local 𝐵 buckets. 
However, considering masking and the parallel processing of buckets, 
we expect communication (or wait time for data to arrive) to dominate 
the total time—which is desirable to ensure the receiver is available 
for all senders. The 𝑢∕𝑙 ratio of the number of buckets in the stream

Table 3
Key details for our test inputs SNAP [31] and KONECT [32]). Avg. is 
the average out-degree and Max. is the maximum out-degree.

Input #Vertices #Edges Avg. Max. 
Github 37,700 285,000 7.60 9,446 
HepPh 34,546 421,578 24.41 846 
DBLP 317,080 1,049,866 6.62 343 
Pokec 1,632,803 30,622,564 37.51 20,518 
LiveJournal 4,847,571 68,993,773 28.26 22,887 
Orkut 3,072,441 117,184,899 76.28 33,313 
Orkut-group 8,730,857 327,037,487 56.81 318,240 
Wikipedia 13,593,032 437,217,424 22.56 5,576,228 
Friendster 65,608,366 1,806,067,135 27.528 3615 

ing algorithm (§3.3) can be shown to be 𝑘. This is because the optimal 
cover could be at most 𝑘 times of the cover of a set with the maximum 
marginal gain. Using this, the runtime of the streaming computation in 
the receiver is (𝑚𝑘𝜃 ⋅𝐵) =

(
𝑚𝑘𝜃 ⋅ (log(1+𝛿) 𝑘)

)
.

Memory complexity: Here we only discuss the memory complexity 
of the streaming algorithm. Each of the bucket needs to store the to

tal cover of its partial solution. Since total cover could be at most 
𝜃, we require (𝜃) memory per bucket. Each bucket also needs to 
store the partial solution of size (𝑘). Putting these together, the to

tal memory complexity of the streaming algorithm in the receiver is 

(
(𝜃 + 𝑘) ⋅ log(1+𝛿) 𝑘

)
. This is more space efficient than any offline al

gorithm that would require storing the complete incoming data, i.e., 
(𝑚𝑘𝜃) elements.

Software availability: GreediRIS is implemented using C/C + + , MPI 
and OpenMP, and is open-sourced at the GreediRIS Github repository

[30].

4. Experimental evaluation

4.1. Experimental setup

Platform: All experiments were conducted on the NERSC Perlmutter 
supercomputer, a HPE Cray EX system. For our experiments, we used 
the CPU nodes (machines), each of which consists of two AMD EPYC 
7763 (Milan) CPUs (with 64 cores per CPU), 256 MB L3 cache, 512 
GB of DDR4 memory, and a HPE Slingshot 11 NIC. Experiments were 
performed using up to 𝑚 = 512 nodes (with a total of 32K cores). All 
runtimes are measured in terms of wall clock time and reported in sec

onds, and all distributed runs were executed by binding one MPI rank 
per node.

Input data: We use nine real world networks from SNAP [31] and 
KONECT [32] summarized in Table 3. The inputs cover a wide range 
in sizes, and application domains such as social networks, citation net

works and web documents. Since edge probabilities are not available 
for these public networks, consistent with practice [12,13,33], we gen

erated edge probabilities from a uniform random distribution between 
[0,0.1]. Note that the weighted cascade (WC) model (i.e., edge weight 
from node 𝑢 to 𝑣 is given by 1∕𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒(𝑣))�-as has been used in 
[14]�-is not an option as it has been shown [34] to not translate to 
more generic diffusion models.

Evaluation methodology: Our experiments include both IC and LT dif

fusion models. For related work comparison, we compared our new 
implementations against two state-of-the-art distributed IMM methods, 
namely Ripples [12] and DiIMM [14]. Ripples is available as an open 
source software [35] and we compared with the C/C + + and OpenMP 
+ MPI distributed implementation. The DiIMM software however was 
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Table 4
Performance of GreediRIS implementations, Ripples [12] and our implemen

tation of DiIMM [14]. All results reported were using 𝑚 = 512 nodes and 32K 
cores in distributed memory. GreediRIS-trunc runs were performed using 
𝛼 = 0.125. Bold values indicate the best entries for that input.

Diffusion: LT Time (in Sec.) 
Input Ripples [8] DiIMM [14] GreediRIS GreediRIS-trunc 
Github 108.3 114.7 1.8 0.2

HepPh 273.1 270.1 1.8 0.5

DBLP 365.0 357.7 3.7 3

Pokec 435.1 434.9 11.6 9.5

LiveJournal 482.1 478.0 22.0 22.9

Orkut 463.4 458.1 18.7 18.2

Orkut-group 549.4 564.6 81.7 78.6

wikipedia 537.0 528.4 45.0 46.6 
friendster 948.2 994.9 746.1 685.9

Diffusion: IC Time (in Sec.) 
Github 122.0 112.0 0.9 0.3

HepPh 175.0 185.5 1.5 0.6

DBLP 266.0 274.7 2.4 1.1

Pokec 96.0 101.4 77.4 30.3

LiveJournal 129.0 146.4 100.0 64.3

Orkut 74.5 88.2 32.5 6.3

Orkut-group 164.3 181.1 119.1 60.6

wikipedia 360.3 287.5 256.0 222

friendster 278.0 319.0 361.0 211.2

not available as of this writing.1 Therefore, to enable a comparison, we 
implemented our own version of their method into the Ripples open 
source package [14]. Additionally, we also added the functionality of 
using OPIM [9] (instead of IMM) as the underlying RIS-based InfMax

strategy into GreediRIS.

For our proposed approach, GreediRIS, we tested two variants of 
our distributed algorithm:

• GreediRIS: uses the distributed streaming algorithm described in 
§3.3 and its parallelization in §3.4;

• GreediRIS-trunc: uses the truncated extension of GreediRIS, 
described in §3.3.2, with 𝛼 fraction of the seeds communicated.

All runs not using OPIM were carried out for 𝑘 = 100 and precision 
parameter 𝜀 = 0.13. For streaming, we chose 𝛿 = 0.077�-as this cofigu

ration set the number of buckets approximately equal to the number of 
available threads (63) at the global receiver. GreediRIS-trunc was 
run for values of 𝛼 ∈ (0,1]. For the experiments using OPIM, we set 
𝑘 = 1000, 𝜀 = 0.01, and adjusted 𝛿 = 0.0562 to maintain the number of 
buckets at 63.

All implementations were compiled using (GCC 11.2.0; optimization 
flags -O3 and -mtune=native), and MPI library Cray-mpich 8.1.24. 
For quality, we use the average number of node (vertex) activations 
over 5 simulations of the diffusion models (IC or LT) from the seed sets 
obtained by Ripples as the baseline, with the same for other implemen

tations presented as a percentage change.

4.2. Comparative evaluation

Table 4 shows comparative results in terms of runtime perfor

mance. GreediRIS-trunc was the fastest for nearly all inputs, 
with GreediRIS coming a close second. For all inputs tested, both

GreediRIS implementations significantly outperformed Ripples and 
DiIMM. For instance, for LT, the speedups of GreediRIS-trunc over 
Ripples ranged from 1.32× (for friendster) to 357.78× (for Github), 
with a geometric mean of 28.99× across all inputs. For IC, the corre

1 We were not able to find its public repository and the authors did not respond 
despite multiple requests.

Fig. 3. Strong scaling performance of GreediRIS for different inputs, varying 
𝑚 up to 512 nodes for the IC model. All times are in seconds.

sponding speedups ranged from 1.38× (for friendster) to 526.13× (for 
Github), with a geometric mean of 36.35× across all inputs. The results 
also show that GreediRIS benfits in runtime savings from trunca

tion. Overall, these runtime results uniformly show the effectiveness 
of our RandGreedi-based distributed streaming as well as truncation 
for the seed selection step. The variations of speedups with inputs and 
models used are to be expected due to the effects of graph topology 
and stochasticity of the process. Relative to IC, the performance bene

fits from GreediRIS under LT are more because it has been known to 
generate shallower BFS traversals (i.e., shorter RRR set sizes).

We also compared the quality of seeds generated by GreediRIS
and GreediRIS-trunc, against the quality of seeds generated by Rip

ples. On average across all data sets, we observed that while using 
𝑚 = 512 nodes, the expected ifluence achieved by the seeds generated 
by GreediRIS and GreediRIS-trunc implementations was 2.72% 
away from the ifluence generated by Ripples. This is despite reduced 
worst-case approximations (as shown in the Lemmas of §3.3) relative to 
Ripples which is (1−1∕𝑒−𝜀)-approximate. For instance, our experimen

tal settings for 𝜀 = 0.13 and 𝛿 = 0.077 yield a worst-case approximation 
ratio of 0.123 in expectation for GreediRIS (compared to a 0.5 ratio for 
Ripples). These results show that despite being weaker in approximation 
guarantee, the practical quality of GreediRIS and GreediRIS-trunc
is comparable to Ripples, while providing significant performance ad

vantage.

4.3. Performance evaluation for GreediRIS

Next, we present a detailed parallel performance evaluation of our

GreediRIS implementations. We first present the strong scaling results 
for our main GreediRIS implementation. Fig. 3 shows the strong scal

ing results. In the interest of space, we show results using the IC model. 
Results for smaller inputs (Github, HepPh, DBLP) that took less than 3 
seconds, are omitted. On the remaining inputs, in general we see better 
scaling behavior as the input size increases—e.g., scaling on LiveJour

nal is near-linear until 𝑚 = 128, while the further runtime reductions are 
continued to be achieved for up to 𝑚 = 256 with Orkut-group, and up 
to 𝑚 = 512 with Wikipedia and friendster. In general, we observed that

GreediRIS is able to push the scaling to larger number of nodes, be

yond what Ripples achieves. This is illustrated in Fig. 4 where we see the 
scaling benfits of using GreediRIS over Ripples for a representative 
input like Orkut-group. GreediRIS-trunc helps push this boundary 
even further with more results shown at the end of this Section.

Fig. 5 shows the detailed runtime breakdown for a representative in

put LiveJournal for the IC diffusion model. For sender time, we used the 
time for the longest running sender. As Fig. 5a corresponding to the total 
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Fig. 4. Scaling of the total execution time for our methods GreediRIS and

GreediRIS-trunc on up to 512 Perlmutter nodes for input Orkut-group. Also 
shown is the scaling behavior of the state-of-the-art tool Ripples.

breakdown shows, the total time is closer to the maximum of the sender 
and receiver times than the sum, and these two times are nearly com

parable �- suggesting the effectiveness of streaming. The sender times 
were evenly split between sampling and all-to-all. We see the sampling 
and all-to-all times scaling with 𝑚. The seed selection, however, starts 
to consume more time at the receiver for larger 𝑚 (≥ 256) settings.

This is something the truncated version (GreediRIS-trunc) is bet

ter equipped to address, as we will see next.

We also examine the receiver process time closely for the same in

put in Fig. 5b, since the global seed selection using streaming is carried 
out at the receiver. Recall that at the receiver, thread rank 0 is the com

municating thread, as it monitors the communication channel by doing a 
non-blocking receive, and when the next seed arrives, it pushes it to the 
local queue. All other 𝑡 − 1 threads (i.e., 63) are bucketing threads, han

dling insertions individually into a subset of ⌈𝐵∕(𝑡 − 1)⌉ buckets. The 
results show that the communicating thread spends most of its time on 

the non-blocking receive, which implies high availability to the senders. 
The bucketing threads generally take significantly much less time, and 
their running times are subsumed within the communicating thread’s 
time. Note that there are 63 threads to handle the buckets.

Evaluation of GreediRIS-trunc: In this section, we tested the frame

work’s truncated variant, GreediRIS-trunc (§3.3.2) by varying the 
parameter 𝛼. Note that 𝛼 is the fraction of seeds sent from each sender 
to the global receiver. Increasing the number of nodes leads to a pro

portional increase in the communication and computation performed by 
the global receiver.

The parameter 𝛼 provides a way to cap this load on the receiver 
and extend scaling. This can be seen in Fig. 6(a), where the parallel 
runtime for GreediRIS starts to plateau for GreediRIS for 𝑚 ≥ 256, 
while for GreediRIS-trunc it continues to decrease (mainly due to 
decrease in 𝛼). While decreasing 𝛼 results in a lower approximation 
guarantee (Lemma 3.3) and consequently degrade quality, our experi

ments showed this to be negligible (less than 0.36%) in practice for any 
given 𝑚.

4.4. Extension of GreediRIS to OPIM

In this section, we show OPIM results integrated to the GreediRIS
framework. Consistent with the large scale experimental settings of [9], 
we set 𝑘 = 1000, 𝜀= 0.01, and terminate when the number of generated 
samples exceeds 220. We set 𝛿 = 0.0562 to ensure the number of buckets 
at the receiver is 63 (1 communicating thread vs. 63 bucketing threads). 
The number of nodes was set to 𝑚 = 512.

For evaluation, we used the GreediRIS-trunc implementation 
that uses OPIM internally, and studied the seed-selection performance. 
Results are shown in Table 5. As can be observed, we are able to achieve 
significant reduction in time with increasing 𝛼, while maintaining the 
reported approximation guarantee (as reported by OPIM using the mar

tingale based analysis in [9]).

5. Conclusions and future work

We presented GreediRIS, a new scalable distributed streaming al

gorithm and its parallel implementations for InfMax. New ideas in

Fig. 5. Parallel runtime breakdown for input LiveJournal (Diffusion model IC) for GreediRIS: by the receiver, sender (longest running), and the total times. Note that 
in streaming, senders and the receiver run in parallel. The plot corresponding to the receiver shows the breakdown between its communicating thread and bucketing 
threads. Note that the majority of the SeedSelect time on the receiver is idle time, as senders participate in the all-to-all and then perform their local seed selections.
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Fig. 6. Strong scaling plot of GreediRIS (top) and GreediRIS-trunc (bot

tom) to up to 512 nodes. The seed selection step is shown as the shaded region 
representing its fraction of the total runtime.

Table 5
Evaluation of GreediRIS-trunc using the OPIM RIS-strategy 
[9], and using parameters: {𝑘 = 1000, 𝜀 = 0.01, target 𝜃 ≈ 220, 
𝛿 = 0.0562}. All runs were performed on the friendster input on 
𝑚 = 512 nodes.

Truncation factor 𝛼: 1 0.5 0.25 0.125

Seed select time (sec): 381.42 200.59 99.30 95.43 
OPIM approx. guarantee: 0.66 0.67 0.68 0.69 

clude a) leveraging the RandGreedi framework for distributed sub

modular optimization for InfMax, b) introducing streaming into dis

tributed max-k-cover allowing efficient masking of communication 
overheads through overlapped computation; and c) truncation to further 
reduce communication burden. The experimental study demonstrated 
that GreediRIS significantly outperforms state-of-the-art distributed 
parallel implementations with comparable quality. The algorithms pre

sented are generalizable to any other monotone submodular optimiza

tion problem. Future extensions and directions could include: i) enabling 
streaming during the sampling phase to mask all-to-all communication 
costs; ii) further optimizations to increase problem size reach to solve 
larger problems on smaller systems; iii) GPU acceleration for sampling; 
and iv) extension to other monotone submodular optimization prob

lems.
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